API Reference¶
Modules:
interfaces
– Core gensim interfacesutils
– Various utility functionsmatutils
– Math utilsdownloader
– Downloader API for gensimcorpora.bleicorpus
– Corpus in Blei’s LDA-C formatcorpora.csvcorpus
– Corpus in CSV formatcorpora.dictionary
– Construct word<->id mappingscorpora.hashdictionary
– Construct word<->id mappingscorpora.indexedcorpus
– Random access to corpus documentscorpora.lowcorpus
– Corpus in GibbsLda++ formatcorpora.malletcorpus
– Corpus in Mallet formatcorpora.mmcorpus
– Corpus in Matrix Market formatcorpora.opinosiscorpus
– Topic related review sentencescorpora.sharded_corpus
– Corpus stored in separate filescorpora.svmlightcorpus
– Corpus in SVMlight formatcorpora.textcorpus
– Tools for building corpora with dictionariescorpora.ucicorpus
– Corpus in UCI formatcorpora.wikicorpus
– Corpus from a Wikipedia dumpmodels.ldamodel
– Latent Dirichlet Allocationmodels.ldamulticore
– parallelized Latent Dirichlet Allocationmodels.ensembelda
– Ensemble Latent Dirichlet Allocationmodels.nmf
– Non-Negative Matrix factorizationmodels.lsimodel
– Latent Semantic Indexingmodels.ldaseqmodel
– Dynamic Topic Modeling in Pythonmodels.tfidfmodel
– TF-IDF modelmodels.rpmodel
– Random Projectionsmodels.hdpmodel
– Hierarchical Dirichlet Processmodels.logentropy_model
– LogEntropy modelmodels.normmodel
– Normalization modelmodels.translation_matrix
– Translation Matrix modelmodels.lsi_dispatcher
– Dispatcher for distributed LSImodels.lsi_worker
– Worker for distributed LSImodels.lda_dispatcher
– Dispatcher for distributed LDAmodels.lda_worker
– Worker for distributed LDAmodels.atmodel
– Author-topic modelsmodels.word2vec
– Word2vec embeddingsmodels.keyedvectors
– Store and query word vectorsmodels.doc2vec
– Doc2vec paragraph embeddingsmodels.fasttext
– FastText modelmodels._fasttext_bin
– Facebook’s fastText I/Omodels.phrases
– Phrase (collocation) detectionmodels.poincare
– Train and use Poincare embeddingsmodels.coherencemodel
– Topic coherence pipelinemodels.basemodel
– Core TM interfacemodels.callbacks
– Callbacks for track and viz LDA train processmodels.word2vec_inner
– Cython routines for training Word2Vec modelsmodels.doc2vec_inner
– Cython routines for training Doc2Vec modelsmodels.fasttext_inner
– Cython routines for training FastText modelssimilarities.docsim
– Document similarity queriessimilarities.termsim
– Term similarity queriessimilarities.annoy
– Approximate Vector Search using Annoysimilarities.nmslib
– Approximate Vector Search using NMSLIBsimilarities.levenshtein
– Fast soft-cosine semantic similarity searchsimilarities.fastss
– Fast Levenshtein edit distancetest.utils
– Internal testing functionstopic_coherence.aggregation
– Aggregation moduletopic_coherence.direct_confirmation_measure
– Direct confirmation measure moduletopic_coherence.indirect_confirmation_measure
– Indirect confirmation measure moduletopic_coherence.probability_estimation
– Probability estimation moduletopic_coherence.segmentation
– Segmentation moduletopic_coherence.text_analysis
– Analyzing the texts of a corpus to accumulate statistical information about word occurrencesscripts.package_info
– Information about gensim packagescripts.glove2word2vec
– Convert glove format to word2vecscripts.make_wikicorpus
– Convert articles from a Wikipedia dump to vectors.scripts.word2vec_standalone
– Train word2vec on text file CORPUSscripts.make_wiki_online
– Convert articles from a Wikipedia dumpscripts.make_wiki_online_nodebug
– Convert articles from a Wikipedia dumpscripts.word2vec2tensor
– Convert the word2vec format to Tensorflow 2D tensorscripts.segment_wiki
– Convert wikipedia dump to json-line formatparsing.porter
– Porter Stemming Algorithmparsing.preprocessing
– Functions to preprocess raw text