corpora.ucicorpus
– Corpus in UCI format¶
Corpus in UCI format.
- class gensim.corpora.ucicorpus.UciCorpus(fname, fname_vocab=None)¶
Bases:
UciReader
,IndexedCorpus
Corpus in the UCI bag-of-words format.
- Parameters
fname (str) – Path to corpus in UCI format.
fname_vocab (bool, optional) – Path to vocab.
Examples
>>> from gensim.corpora import UciCorpus >>> from gensim.test.utils import datapath >>> >>> corpus = UciCorpus(datapath('testcorpus.uci')) >>> for document in corpus: ... pass
- add_lifecycle_event(event_name, log_level=20, **event)¶
Append an event into the lifecycle_events attribute of this object, and also optionally log the event at log_level.
Events are important moments during the object’s life, such as “model created”, “model saved”, “model loaded”, etc.
The lifecycle_events attribute is persisted across object’s
save()
andload()
operations. It has no impact on the use of the model, but is useful during debugging and support.Set self.lifecycle_events = None to disable this behaviour. Calls to add_lifecycle_event() will not record events into self.lifecycle_events then.
- Parameters
event_name (str) – Name of the event. Can be any label, e.g. “created”, “stored” etc.
event (dict) –
Key-value mapping to append to self.lifecycle_events. Should be JSON-serializable, so keep it simple. Can be empty.
This method will automatically add the following key-values to event, so you don’t have to specify them:
datetime: the current date & time
gensim: the current Gensim version
python: the current Python version
platform: the current platform
event: the name of this event
log_level (int) – Also log the complete event dict, at the specified log level. Set to False to not log at all.
- create_dictionary()¶
Generate
gensim.corpora.dictionary.Dictionary
directly from the corpus and vocabulary data.- Returns
Dictionary, based on corpus.
- Return type
Examples
>>> from gensim.corpora.ucicorpus import UciCorpus >>> from gensim.test.utils import datapath >>> ucc = UciCorpus(datapath('testcorpus.uci')) >>> dictionary = ucc.create_dictionary()
- docbyoffset(self, offset)¶
Get the document at file offset offset (in bytes).
- Parameters
offset (int) – File offset, in bytes, of the desired document.
- Returns
Document in sparse bag-of-words format.
- Return type
list of (int, str)
- input¶
object
- Type
input
- classmethod load(fname, mmap=None)¶
Load an object previously saved using
save()
from a file.- Parameters
fname (str) – Path to file that contains needed object.
mmap (str, optional) – Memory-map option. If the object was saved with large arrays stored separately, you can load these arrays via mmap (shared memory) using mmap=’r’. If the file being loaded is compressed (either ‘.gz’ or ‘.bz2’), then `mmap=None must be set.
See also
save()
Save object to file.
- Returns
Object loaded from fname.
- Return type
object
- Raises
AttributeError – When called on an object instance instead of class (this is a class method).
- num_docs¶
‘long long’
- Type
num_docs
- num_nnz¶
‘long long’
- Type
num_nnz
- num_terms¶
‘long long’
- Type
num_terms
- save(*args, **kwargs)¶
Saves the in-memory state of the corpus (pickles the object).
Warning
This saves only the “internal state” of the corpus object, not the corpus data!
To save the corpus data, use the serialize method of your desired output format instead, e.g.
gensim.corpora.mmcorpus.MmCorpus.serialize()
.
- static save_corpus(fname, corpus, id2word=None, progress_cnt=10000, metadata=False)¶
Save a corpus in the UCI Bag-of-Words format.
Warning
This function is automatically called by :meth`gensim.corpora.ucicorpus.UciCorpus.serialize`, don’t call it directly, call :meth`gensim.corpora.ucicorpus.UciCorpus.serialize` instead.
- Parameters
fname (str) – Path to output file.
corpus (iterable of iterable of (int, int)) – Corpus in BoW format.
id2word ({dict of (int, str),
gensim.corpora.dictionary.Dictionary
}, optional) – Mapping between words and their ids. If None - will be inferred from corpus.progress_cnt (int, optional) – Progress counter, write log message each progress_cnt documents.
metadata (bool, optional) – THIS PARAMETER WILL BE IGNORED.
Notes
There are actually two files saved: fname and fname.vocab, where fname.vocab is the vocabulary file.
- classmethod serialize(fname, corpus, id2word=None, index_fname=None, progress_cnt=None, labels=None, metadata=False)¶
Serialize corpus with offset metadata, allows to use direct indexes after loading.
- Parameters
fname (str) – Path to output file.
corpus (iterable of iterable of (int, float)) – Corpus in BoW format.
id2word (dict of (str, str), optional) – Mapping id -> word.
index_fname (str, optional) – Where to save resulting index, if None - store index to fname.index.
progress_cnt (int, optional) – Number of documents after which progress info is printed.
labels (bool, optional) – If True - ignore first column (class labels).
metadata (bool, optional) – If True - ensure that serialize will write out article titles to a pickle file.
Examples
>>> from gensim.corpora import MmCorpus >>> from gensim.test.utils import get_tmpfile >>> >>> corpus = [[(1, 0.3), (2, 0.1)], [(1, 0.1)], [(2, 0.3)]] >>> output_fname = get_tmpfile("test.mm") >>> >>> MmCorpus.serialize(output_fname, corpus) >>> mm = MmCorpus(output_fname) # `mm` document stream now has random access >>> print(mm[1]) # retrieve document no. 42, etc. [(1, 0.1)]
- skip_headers(input_file)¶
Skip headers in input_file.
- Parameters
input_file (file) – File object.
- transposed¶
‘bool’
- Type
transposed
- class gensim.corpora.ucicorpus.UciReader(input)¶
Bases:
MmReader
Reader of UCI format for
gensim.corpora.ucicorpus.UciCorpus
.- Parameters
input (str) – Path to file in UCI format.
- docbyoffset(self, offset)¶
Get the document at file offset offset (in bytes).
- Parameters
offset (int) – File offset, in bytes, of the desired document.
- Returns
Document in sparse bag-of-words format.
- Return type
list of (int, str)
- input¶
object
- Type
input
- num_docs¶
‘long long’
- Type
num_docs
- num_nnz¶
‘long long’
- Type
num_nnz
- num_terms¶
‘long long’
- Type
num_terms
- skip_headers(input_file)¶
Skip headers in input_file.
- Parameters
input_file (file) – File object.
- transposed¶
‘bool’
- Type
transposed
- class gensim.corpora.ucicorpus.UciWriter(fname)¶
Bases:
MmWriter
Writer of UCI format for
gensim.corpora.ucicorpus.UciCorpus
.Notes
This corpus format is identical to Matrix Market format<http://math.nist.gov/MatrixMarket/formats.html>, except for different file headers. There is no format line, and the first three lines of the file contain `number_docs, num_terms, and num_nnz, one value per line.
- Parameters
fname (str) – Path to output file.
- FAKE_HEADER = b' \n'¶
- HEADER_LINE = b'%%MatrixMarket matrix coordinate real general\n'¶
- MAX_HEADER_LENGTH = 20¶
- close()¶
Close self.fout file.
- fake_headers(num_docs, num_terms, num_nnz)¶
Write “fake” headers to file, to be rewritten once we’ve scanned the entire corpus.
- Parameters
num_docs (int) – Number of documents in corpus.
num_terms (int) – Number of term in corpus.
num_nnz (int) – Number of non-zero elements in corpus.
- update_headers(num_docs, num_terms, num_nnz)¶
Update headers with actual values.
- static write_corpus(fname, corpus, progress_cnt=1000, index=False)¶
Write corpus in file.
- Parameters
fname (str) – Path to output file.
corpus (iterable of list of (int, int)) – Corpus in BoW format.
progress_cnt (int, optional) – Progress counter, write log message each progress_cnt documents.
index (bool, optional) – If True - return offsets, otherwise - nothing.
- Returns
Sequence of offsets to documents (in bytes), only if index=True.
- Return type
list of int
- write_headers()¶
Write blank header lines. Will be updated later, once corpus stats are known.
- write_vector(docno, vector)¶
Write a single sparse vector to the file.
- Parameters
docno (int) – Number of document.
vector (list of (int, number)) – Document in BoW format.
- Returns
Max word index in vector and len of vector. If vector is empty, return (-1, 0).
- Return type
(int, int)