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A B S T R A C T

Data mining applications that work over input of very large scale (web-
scale problems) pose challenges that are new and exciting both academi-
cally and commercially. Any web-scale algorithm must be robust (deal-
ing gracefully with the inevitable data noise), scalable (capable of ef-
ficiently processing large input) and reasonably automated (as human
intervention is very costly and often impossible on such scales).

This thesis consists of two parts. In the first part, I explore scalabil-
ity of methods that derive a semantic representation of plain text docu-
ments. The focus will be entirely on unsupervised techniques, that is, on
methods that do not make use of manually annotated resources or hu-
man input. I develop and present scalable algorithms for Latent Seman-
tic Analysis (LSA) and Latent Dirichlet Allocation (LDA), two general-
purpose statistical methods for semantic analysis that serve as building
blocks for more concrete, applied algorithms. Scalability is achieved by
building the semantic models in a constant amount of memory and dis-
tributing the computation over a cluster of autonomous computers, con-
nected by a high-latency network. In addition, the novel LSA training
algorithm operates in a single pass over the training data, allowing con-
tinuous online training over infinite-sized training streams.

The second part of the thesis deals with possible applications of these
general semantic algorithms. I present my research in the field of In-
formation Retrieval (IR), including work on topic segmentation of plain-
text documents, on document-document similarities (“semantic brows-
ing”) in digital libraries and on language segmentation of documents
written in multiple languages.
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ANN Artificial Neural Network
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MCMC Markov-Chain Monte Carlo

ML Machine Learning
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SVD Singular Value Decomposition

SVM Support Vector Machines

VSM Vector Space Model

vii





N O TAT I O N

Throughout this thesis, bold uppercase letters will denote matrices, A,
and lowercase letters vectors and scalars, x,y, v1, vec. The letters m
and n will represent the number of rows and columns of a matrix A,
respectively. In the Vector Space Model, observations will correspond to
matrix columns (so that n equals the total number of observations) and
features rows (withm the total number of features). In parts that discuss
dimensionality reduction, I will use the shorthand Am×n for a matrix
A ∈ Rm×n, that is, for a real-valued matrix with m rows (features) and
n columns (observations, documents). The following table summarizes
some of the notation used in the thesis.

‖x‖ Euclidean (L2) norm of vector x, ‖x‖ =
√∑

i x
2
i .

ai,j Element of matrix A at i-th row and j-th column.

AT Transposition of matrix A.

‖A‖, ‖A‖F Frobenius norm of a matrix, ‖A‖ =
√∑

i,j a
2
i,j.

‖A‖2 Spectral norm of a matrix, ‖A‖2 = max‖x‖=1|Ax|.[
A1, A2

]
Column-wise block matrix concatenation.[

A1
A2

]
Row-wise block matrix concatenation.

x Mean of vector x.

Ai,∗,A∗,j The i-th row (j-th column) vector of matrix A.
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1
I N T R O D U C T I O N

Man is the best computer we can put aboard a spacecraft,
and the only one that can be mass produced with unskilled labor.

(Wernher von Braun)

Although the advances in the field of Artificial Intelligence (AI) over
the past 60 years are considerable1, the ultimate goal of making ma-
chines understand human language is still far off. Historically, AI re-
search concentrated on tasks that were considered intellectually hard
and therefore impressive for humans: rapid calculations, verbatim mem-
orization, playing chess at grandmaster level, automated theorem prov-
ing. . . Interestingly, these are all relatively simple to master for comput-
ers. Early triumphs in these areas have inspired optimism that didn’t
translate to other fields, such as object recognition or understanding nat-
ural language, which in turn led to repeated periods pessimism (known
as the “AI winters”).

1.1 ai in science

The fundamental nature of the field of Artificial Intelligence is mani-
fested in and mirrored by the multitude of approaches to understanding
the role of science and engineering in producing intelligent machines.

One branch, the origins of which can be traced back to the philosophi-
cal works of Kant and Heidegger, is called the embodied cognition hypothe-
sis: cognition can only come from machines equipped with sensory and embodied cognition

hypothesis
1 The term of Artificial Intelligence in connection with modern computers is said to

have originated with McCarthy, Minsky, Rochester and Shannon at the Dartmouth
Conference in 1956.
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4 introduction

motor skills (Brooks, 1990; Lakoff and Johnson, 1999). This view is par-
ticularly popular in robotics and neurobiology and is in direct contrast
to the high-level “symbolic AI” approaches. Hubert Dreyfus made a
strong claim as early as 1960s that human intelligence depends deeply
on unconscious instincts and reflexes and that these unconscious skills
cannot be captured by formal rules (Dreyfus, 1967).

Another approach, popular in linguistics, psychology and philosophy,
is to study AI (and communication in particular) within the context of
logical propositions. This line of thinking also has a long tradition, with
notable proponents of Leibniz or Russell. Propositions can be viewed
as high-level mental entities that correspond to (“denote”) external
events and states of affairs (Cruse, 2000). In themselves propositions
are meaningless, but may assume a true/false truth value with respect
to some actual events or states of affairs. Reasoning (logical inference)
happens over symbolic representations and a corresponding knowledgesymbolic AI
base. Extensions to this model include linguistic modality, higher-order
logics, propositional attitudes (Cresswell, 1985) and so on. A particularly
well-grounded theory is that of Transparent Intensional Logic (TIL),TIL
pioneered in (Tichý, 1969, 1980). TIL builds on the distinction between
meaning, reference and denotation and allows principled inference over
propositions generalized into logical constructs of arbitrary order. See
also Materna et al. (1989); Materna (2004) for ongoing work in this
fascinating theory.

These two conflicting views were somewhat reconciled in 1990s with
the emergence2 of sub-symbolic computing. The difficulties were recog-
nized to stem from uncertainty inherent in real-world tasks and conse-
quently research focus has gradually shifted from pure logic to fuzzy
reasoning and statistics. Many of the recent successes, from machine
translation to speech recognition to web search (information retrieval)
to personalized advertising, rely on the ability to automatically learn
from massive collections of past examples. In the sub-symbolic (or
connectionist) approach, emphasis is still put on solid, mathematicalconnectionism
theories, but a system’s behaviour and the “rules” producing it are no

2 Or, rather, re-emergence: many of the sub-symbolic concepts have been acknowledged
to be related to earlier work, from Wittgenstein’s view on the connection between lan-
guage use and meaning, to the above mentioned Dreyfus’ critique of AI, Rosenblatt’s
early perceptron algorithm, the noisy channel model and so on.
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longer necessarily open to high-level human introspection and explana-
tion. Rule specification occurs at a lower level, and semantic properties
are hoped to emerge (that is, manifest themselves in the behaviour of
the machine) without having been explicitly programmed in (Chalmers,
1992). Examples include the Artificial Neural Networks (ANNs), statis-
tical modelling and other sub-disciplines of machine learning. Thanks
to the solid mathematical foundation and use of mathematics as the un-
derlying language, this approach has allowed collaboration across many
previously disconnected fields of computer science, such as image pro-
cessing, speech processing or natural language processing, as well as
economics, biology and mathematics itself (Russell and Norvig, 2009).

1.2 machine learning

The subfield of AI which focuses on constructing computer programs
that learn from experience (with respect to some useful but limited class
of tasks and a performance measure (Mitchell, 1997)) is called Machine
Learning (ML). Its goal is to produce techniques that discover patterns
and regularities in semi-structured or unstructured data. The many sub-
branches of ML include classification, clustering, probabilistic reasoning
or decision theory.

Despite its successful applications, current state-of-the-art ML tech-
niques contain a lot of what could be called “virtue by necessity”—the
mathematical models that drive them behind the scene are chosen for
their computational tractability, and typically contain simplified (some-
times blatantly wrong) assumptions; they are often hard to interpret
for human experts and their output rarely directly translates to new in-
sights or knowledge about the problem3. Their success is measured by
their utility, not elegance in the psychological or linguistic sense. With
a bit of creative license, this could also be called the “dumb but use-
ful” paradigm: even the most advanced and state-of-the-art NLP tech-
niques, like the variants of the Latent Dirichlet Allocation described in
Chapter 4, are marked by naïve assumptions—the underlying model is
plainly inadequate in modelling human language in its richness (Pinker,

3 After all, as Richard Hamming famously quipped, “The purpose of computing is
insight, not numbers”.
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2000). More than anything else, the word “dumb” here reflects our hu-
man intuition of elegance and our insight into how we ourselves form
utterances, how we experience language internally. On the other hand,
from a mathematical point of view, these methods are often beautiful
and quite clever (anything but dumb!), as is to be expected after many
decades of intense research.

The work described in this thesis falls fully under this “dumb but use-
ful” paradigm. It deals with a particular subfield of Machine Learning
called unsupervised learning, where data comes in such poor quality or inunsupervised

learning such quantities that human “supervision”, as well as any sort of human
inspection during its processing, is infeasible. This initial chapter intro-
duces the field and lays background for the subsequent part, which will
describe particular methods of semantic inference in unsupervised en-
vironments. Part i discusses the scalability challenge of applying these
methods to vast, modern datasets. Part ii then applies these general
semantic methods to specific, real-world problems. It presents some
associated semantic algorithms, like topic and language segmentation.
The purpose of these is to make sure we compare “apples to apples”
when dealing with semantic similarity in heterogeneous text corpora.

1.3 statistical semantics

In the following, corpus will denote a body of (digital) text documents. Acorpus
document is simply a chunk of text and does not necessarily correspond
to the entirety of a manuscript as it was originally published. In Infor-
mation Retrieval, documents are often individual paragraphs, passages,
sentences, phrases or even just sequences of characters. The ideal gran-
ularity of what constitutes a “document” is dependent on the intended
application of the corpus. In these generalized settings, documents are
also sometimes called contexts or chunks. It can be advantageous to view
and store documents as “semantically coherent blocks of text”, where
each chunk deals with a single idea or topic; will return to the particu-
lar question of semantic chunking in Chapter 5.

(Firth, 1957) postulated that "You shall know a word by the company
it keeps". It has long been observed that words that occur in similar
contexts are semantically related (Harris, 1954; Furnas et al., 1984); see
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(Turney and Pantel, 2010) for a more complete overview. This is often
phrased more generally as the statistical semantics hypothesis: statistical semantics

hypothesis

“Statistical patterns of human word usage can be used to figure out
what people mean.”

Clearly, the wording here is rather broad and the hypothesis is more
philosophical than practical in nature. It is most closely related to lex-
ical semantics within the traditional NLP semantics hierarchy (Allen,
1995), or the word-word relations of (Griffiths et al., 2007). For an in-
teresting take on word relations from the opposite direction, concen-
trating on statistical out-liers (“exploitations”) versus salient patterns
(“norms”), see (Hanks, 2011). Nevertheless, the statistical semantics
hypothesis has served as an important stepping stone towards more
specific, computation-oriented instantiations, such as the distance-based
view of the bag-of-words hypothesis.

1.4 bag-of-words

In mathematics, a bag, also called a multiset, is a set with duplicates
allowed. A document can be represented by the bag of its constituent to-
kens, so that for example the utterance “to be or not to be” is represented
by the multiset {to, be, or, not, to, be}. Order of the elements in (multi)sets
is arbitrary, so we may equivalently represent this document by the vec-
tor 〈2, 1, 1, 2〉, given the understanding that the first element corresponds
to the frequency of the word “be”, second to that of “not”, third of “or”
and fourth of “to”.

In Information Retrieval, the bag-of-words hypothesis stipulates that bag-of-words
hypothesissuch word frequency vectors can be used to assess semantic relevance of

documents. In other words, it states that the frequencies of individual
words are sufficiently indicative of semantic association between two
documents (or a document and a query).

Needless to say, the bag-of-words hypothesis is painfully naïve from
the linguistic perspective. It ignores word order, as well as any syntactic
structure, which necessarily incurs a serious loss of information. Each
observation is represented by a vector, i.e., by a single point in space.
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Similarity then translates to standard vector similarity measures, some
of which will be discussed in the following chapter.

On the positive side, the transformation from the surface text into
a bag-of-words vector is computationally straightforward and efficient.
Switching to the world of vectors and matrices also allows us to utilize
powerful techniques and algorithms from the field of linear algebra.
Perhaps the most convincing argument in this respect is the vast body
of literature and successful applications based on this approach (Turney
and Pantel, 2010).

1.5 the term-document matrix

With a collection of many documents, their corresponding vectors can be
stacked into a single matrix. By convention, document vectors form the
columns, while the vector elements (called features) form the matrix rows.
With n documents and m features, we talk of an m× n matrix A. In
more complex schemes, the integer event frequencies from bag-of-words
are commonly reweighted according to their importance (reflecting the
intuition that some words are more semantically important than others),
and the resulting vector can be normalized to abstract from document
length, so that A ∈ Rm×n. Where clarity is not compromised, we will
use the shorthand notation Am×n to say the same thing.

Under the bag-of-words hypothesis, each vector dimension corre-
sponds to the frequency of a particular token; these dimensions form
descriptive facets of the data and are therefore also called features. Eachfeatures
document is then interpreted as a measurement in a multidimensional
feature space. Bag-of-word models use features with quantitative do-
main (integer or real numbers). Features used in other fields of Ma-
chine Learning, such as unordered nominals (human gender, national-
ity, colours) or ordered nominals (“good-neutral-bad”), are either avoided
or must be first carefully converted. Another peculiarity of the bag-of-
words approach is the very high dimensionality of the feature space:
one for each token type, with the total number of dimensions often ex-
ceeding 100,000.

In many domains, only a handful of features are active in any given
context. For example, in the “to be or not to be” example, only three words
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appear with non-zero frequency. All other words, such as “shopping” or
“hippopotamus” have a frequency of zero. The vector that corresponds
to this document would therefore have three non-zero elements, and
typically tens or hundreds of thousands of zero elements. Naturally,
algorithms that build on top of the bag-of-words paradigm must take
sparsity into account if they are to be efficient. See for example (L’uboš
Kardoš, 2010) for a discussion of the practical issues of sparse matrix
storage and operations.

The vanilla bag-of-words model described above is seldom the repre-
sentation of choice. More advanced techniques used in practice exploit
more complex vocabulary patterns, just as additional vector transfor-
mations and similarity metrics capture more of (or a different type of)
document semantics.

1.6 text preprocessing

For word-based contexts, there are a number of associated tasks that
must happen before any semantic processing takes place.

• Tokenization, to split the text into individual words. This is already
non-trivial for some Asian languages, including Chinese.

• Token normalization, which depending on the task can be as simple
as case folding (discarding information about letter casing) or as
complex as lemmatization (full morphology analysis in synthetic,
and especially flective, languages like Czech).

• Spelling correction. How to deal with ambiguous spelling varia-
tions such as “Nokia N8” vs. “Nokia N-8” vs. “Nokia N 8”, or
“Windows 2000” vs. “Windows 2k”, “don’t” vs. “dont” and “state-
of-the-art” vs. “state of the art” etc. Depending on the application,
the desired course of action may be to use the exact form as it ap-
pears in the text, or normalize the tokens to a single canonical form
(either during the tokenization phase or later at query resolution).

• Multi-word expressions. How to handle more complex lexi-
cal units? Examples include dates (“12.4.2010”), IP addresses
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(“147.251.48.1”), ranges (“10–55”), abbreviations or compound to-
kens in general, including emoticons (“:-)”, “<3”).

All of these choices interact and affect a system’s performance. They
are also crucial in the sense that errors at this fundamental level are very
costly to correct later on. As an alternative, there have been experiments
with bag-of-word models that are based on character n-grams (Cavnar
and Trenkle, 1994). This thesis will not deal with text preprocessing
issues further; a curious reader is referred to (Manning and Schütze,
1999) and (Feldman and Sanger, 2007) for more information.

1.7 scalability

Web-scale problems depart from the traditional sense of “efficiency” in
that FLOPS (Floating Point Operations per Second) are no longer “the” met-
ric of choice of performance. A different metric, called the number of
passes over the input, is more important, as data is often stored in sec-
ondary memory (disk) or even off-site, and doesn’t fit in main memory.
Fetching the input data is the most costly operation, typically dwarfing
any processing done afterward by the CPU. Moreover, practical algo-
rithms cannot expect to use more than a constant amount of main mem-
ory with respect to the input size, if they are to be called truly “scalable".

This thesis describes several general purpose algorithms for inferring
latent semantic structure of text documents. Robustness is achieved by
using statistical (rather “brute-force”, from a linguistic point of view)
approach. For two of the most widely used algorithm, Latent Semantic
Analysis and Latent Dirichlet Allocation, I present novel results that
improve scalability by designing the algorithms to be streamed, online,
working in a constant amount of memory w.r.t. the training corpus size,
distributed and operating in a small number of passes over the input.

1.8 thesis outline and contributions

The highlight of this thesis is a novel algorithm for Singular Value Decom-
position (SVD), which operates in a single pass over the input collection
(each document needs to be seen only once), is streamed (documents
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are accessed sequentially, no random access required) and can be dis-
tributed across a cluster of commodity computers connected by a high-
latency network. Although the application of this SVD algorithm for
the purpose of this thesis is Latent Semantic Analysis, SVD is a general
linear algebra routine that is at the heart of many algorithms across
much of the field of Computer Science, from Image Processing to Signal
Processing, Collaborative Filtering, solving Differential Equation, An-
tenna Array Theory and others (Deprettere, 1989; Golub and Van Loan,
1996). In this way, the theoretical aspect of my work is also relevant
outside of the domain of Natural Language Processing. I also present
a streamed, distributed algorithm for Latent Dirichlet Allocation (LDA),
a Bayesian modelling method which also works in a constant amount
of memory. Advances in scalability of these general-purpose LSA and
LDA algorithms form the first part of this thesis.

Part ii of the thesis describes some possible applications of these
general-purpose semantic algorithms to the Information Retrieval (IR)
domain. Both LSA and LDA are high-level, general purpose methods,
and can be useful both in assessing term similarity (or term clustering)
and document similarity (document clustering). In Chapters 5–7 I will
discuss applications such as topical segmentation of unstructured text
or semantic browsing in digital libraries.

While working on these problems, I developed a software package
with efficient implementations of these algorithms. Written in Python
and released as open-source under the OSI-approved LGPL license, it
has already attracted a substantial user base and been used by students
in a number of academic theses across the world. It has also served
as a tool for further research, in areas as diverse as evaluation of
word clustering (Turian et al., 2010), noun/classifier disambiguation
of Mandarin Chinese (Magistry et al., 2010) or music recommendation
systems (Fields et al., 2010).





2
T H E V E C T O R S PA C E M O D E L

Perhaps the first application based on the bag-of-words hypothesis
was done by the research group around Gerard Salton at the Cornell
University in the 1960s, later published in (Salton, 1971). Their SMART
(System for the Mechanical Analysis and Retrieval of Text) Information SMART
Retrieval system is widely acknowledged for coining the phrase Vector
Space Modelling (VSM) for these type of systems (Salton, 1989). Since VSM
then, Vector Space Modelling (and its many extensions) have become
common place. Despite its unrealistic linguistic assumptions, it set the
direction for one of the most successful approaches to text semantics so
far, especially outside of the academic world (Turney and Pantel, 2010).

2.1 vsm properties

The VS model requires that the system architect make several design
choices: Which features to extract from the documents? What weights
to assign them? How to compute the document similarity? Although all
of them have a standard answer in NLP (discussed below) by now, the
room for expert knowledge is still very large.

The first task, creating a suitable representation for the objects of
interest (in our case, text documents), is by far the most critical. It is
far easier to obtain good results with a poor algorithm on good data,
than with a smart algorithm that is running over input of poor quality.
Often there are additional features added to the bag-of-words vectors,
capturing domain-specific knowledge. This is the place where expert
knowledge has the greatest impact, and can make the greatest difference
in a system’s performance.

13
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2.2 weighting schemes

Intuitively, some tokens are more important than others. For exam-
ple, the semantic contribution of the word “dimensionality” is usually
much greater than that of “the”. Similarly, some frequency ranges are
more telling than others—once a token has appeared in a document,
its subsequent repetitions are less informative; this is called the “word
burstiness” in NLP (Madsen et al., 2005; Doyle and Elkan, 2009). These
intuitions have led to the introduction of weighting schemes to VSM pro-
cessing. Weighting schemes are (mostly empirical) attempts to model
the underlying relationships between the importance of individual di-
mensions, token frequency distribution and varying document lengths.
Following the three-letter descriptor notation from (Salton, 1971) (one
letter for each of the three types of factors), we have

1. Local weighting, which rescales weights within a single document.
The four most popular local weighting schemes are

• the value of the term frequency, aij (letter choice “n”),

• zero/one depending on term presence/absence in the docu-
ment (“b” for binary weight),

• augmented weight (“a") which scales the frequency into
〈0.5, 1〉 interval with 0.5+ 0.5 aij

maxkakj
,

• logarithmic weight log(1+ aij), denoted by the letter “l”.

2. Global weighting which takes into account importance of the feature
across the whole collection. It can produce a constant weight of 1.0
(letter “n”) or inverse document frequency log

(
n

|1+di|

)
(letter “t”).

3. Normalization sets the vector to unit Euclidean length (“c”) or does
nothing (“n”).

In the above, aij stands for the frequency of term i in document j in
the term-documents matrix Am×n, and di is the number of documents
in which the term i appears at least once.
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These three factors combine together to make a single weighting strat-
egy: for example, “bnn” stands for binary weighting without normal-
ization and with all features having the global weight; “nnn” is the un-
modified bag-of-words vector etc. The most widely used combination is

“ntc”, which is more commonly known as the TF-IDF weighting1. TF-IDF
There are several other common preprocessing steps, such as stop-list

removal, thresholding very rare terms (typically OCR errors and other
noise), which I will not discuss further here. See for example our paper
(Řehůřek and Pomikálek, 2007) or (Yang and Pedersen, 1997; Forman
et al., 2003) for a discussion of the impact of the various preprocessing
parameters on classification accuracy.

2.3 similarity measures

Given two real-valued vector representations, we need a way to quantify
their similarity. Assuming the representations are semantically meaning-
ful to start with, this will help us with the goal of answering semantic
similarity queries. Here I will restrict the discussion to a few well es-
tablished similarity functions which take two vector representations as
their input and produce the similarity (a single number) on output. (Rijs-
bergen, 1979) observed that many of the popular similarity measures
produce similar results, provided the input representations are properly
normalized (vectors of unit length; posteriors of unit probability).

Other similarity functions exist, for measuring the similarity of sets
(the Jaccard’s coefficient), of strings (the edit distance) or even trees (the
tree edit distance (Cobena et al., 2002)). See (Turney and Pantel, 2010)
for a discussion of possible modes of Vector Space Modelling, such as
the document vs. document similarity, word vs. word similarity or the
similarity of word relations.

2.3.1 Minkowski Distance

The Minkowski distance Lp is actually a class of distance functions
parametrized by p ∈ 〈1, ∞). The distance between two m-dimensional

1 The term TF-IDF is also sometimes used to describe the end product of applying the
weighting, in which case it denotes the entire resulting matrix.
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vectors x,y is given by

Lp = ‖x− y‖p =

(
m∑
i=1

|xi − yi|
p

)1/p
. (2.1)

The popular Manhattan and Euclidean distances form the special casesEuclidean
distance of L1 and L2, respectively. The limiting case when p → ∞ results in

L∞ = maxmi=1|xi − yi| and is called the Chebyshev distance.
In our vector space scenario, distance and similarity are inversely

proportional, so we may compute the latter from the former, for example
by taking the inverse, 1/1+‖x−y‖p .

2.3.2 Cosine Similarity

The most common similarity measure for the Vector Space Model is
cosine similarity, which measures cosine of the angle between two vectors
in the vector space,

cossim(x,y) =
xT · y
‖x‖‖y‖

. (2.2)

The range of this function is 〈−1, 1〉. Another observation to be
made is that if the similarity reduces to inner product (e.g., when using
the cosine measure with normalized document lengths), all pairwise
similarity scores of documents represented by term-document matrix
Am×n may be obtained by a single matrix product AT ·A. The resulting
n× n matrix (n being the number of documents) is symmetric and ai,j
holds the similarity values between the documents i and j.

2.3.3 Hellinger Distance

In Bayesian probability modelling, the latent semantic representation
of documents correspond to probability distributions over the latent
variables. Hellinger distance measures divergence of two probability
distributions, and in the discrete case takes the form

H(x,y) =

√√√√1

2

(
m∑
i=1

(
√
xi −
√
yi)2

)
. (2.3)
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The Hellinger distance is connected to the Kullback-Leibler divergence
DKL (an asymmetric distance also used in probability theory, (Rao, 1995))
by DKL(x||y) > 2

ln 2H
2(x,y).

2.4 querying

Unlike traditional database systems designed for boolean queries (such
as the by now standard keyword search of Web search engines), in data
mining we often need to retrieve objects that are merely similar and not
necessarily identical to the query object. This is an extension not specific
to text documents; methods for measuring similarity for images, faces,
fingerprints, time series etc. have been developed.

The query problem may be defined as either retrieving the k most
similar documents (exact query), or retrieving k documents that are very
similar but not necessarily the most similar (approximative query). This
type of querying is sometimes referred to as the k nearest neighbours
(k-NN) search. Another type of query commonly used is the range
query, where all documents within a given distance from the query are
retrieved. The inverted file (also called inverted index) technique and its
numerous extensions often used both in boolean model (see e.g. (Moffat
and Zobel, 1996; Zobel et al., 1992)) cannot be effectively utilized here,
because VSM vectors are real-valued.

The first observation is that modern databases are potentially large,
consisting of hundreds of thousands of documents or more. The naïve
approach of linearly scanning through the entire database for each
query is prohibitive due to the I/O costs. Although this problem can
he alleviated by replication—splitting or distribution of the database
over more machines—much research has gone into more principled
techniques. In general terms, these techniques usually try to exploit
structure of the data and use partitioning to prune searches over the
database. These techniques fall into the categories of data partitioning
and space partitioning methods. Both have enjoyed a lot of attention in
the past decade, and there has been a steady flood of various *-Tree
proposals.

Examples of popular data partitioning methods include
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r-trees (Guttman, 1984) as a generalization of B-Trees into higher
dimensions. It turns out that the partitioned regions overlap more
and more with increasing dimensionality, reducing efficiency of
the indexing structure.

r*-trees (Beckmann et al., 1990) are optimized versions of R-trees
which try to minimize the overlap by grouping nodes using a more
complex algorithm.

x-trees (Berchtold et al., 2002) which also try to overcome the problem
with R-Tree based techniques. Their approach introduces supern-
odes and different splitting rules to avoid high overlaps.

m-trees (Ciaccia et al., 1997) which abstract from the Vector Space
by allowing objects to come from a general metric space (i.e.,
requiring only a black-box distance function).

Among the space partitioning methods we count grid-files (Nievergelt
et al., 1984), quad-trees (Finkel and Bentley, 1974) or KD-trees (Bentley,
1975), which divide the data space along predetermined lines regardless
of data clusters. For both types of methods, the idea is to build a
multidimenional index structure that will allow only a subset of all the
documents to be traversed in order to answer any query.

It has however been noted that all of these methods suffer from the
so called curse of dimensionality (Weber et al., 1998). The effectivenesscurse of dimension-

ality of many of these indexing structures is highly data-dependent and,
in general, difficult to predict. Often a simple linear scan of all the
items in the database is cheaper than using an index-based search in
high dimensions. While these methods perform generally very well
in low dimensional spaces, the performance drops as the number of
dimensions increases. This result has been reported for R*-Trees and
X-Trees (Berchtold et al., 1997, 2002) and also for the SR-Tree (Katayama
and Satoh, 1997). Unfortunately this is no coincidence, but rather
a fundamental property of high dimensional spaces. According to
(Weber and Blott, 1997), under assumptions of data uniformity and
independence of data dimensions, and data being partitioned into
blocks, all such indexing structures eventually deteriorate into linear
scanning as the dimensionality increases. Building and maintaining
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complex indexes is computationally demanding. Moreover, from a
practical point of view, the real query response time is bogged down
by random disk seeks during tree updates and traversal, something that
the simple linear scan trivially avoids. As shown by authors of (Weber
and Blott, 1997), the dimensionality of where the performance break
occurs is not even very high. On their image database, linear scan starts
outperforming the tree indexing structures at around the dimensionality
of 10, measured by wall clock times (that is, including I/O costs).

Two solutions to the curse of dimensionality have been proposed: a)
making the search distributed (Batko et al., 2006), and b) resigning on
the issue and concentrating on making the linear scan as fast as possible.
In the latter, a promising line of optimization is the VA-File (Weber and
Blott, 1997). VA-File offers constant memory improvement while not
sacrificing any accuracy. Unlike other data partitioning methods, its
relative performance even increases with increasing dimensionality. The
authors report that for a high number of dimensions (in the order of
hundreds), VA-File outperforms all partitioning based methods by an
order of magnitude or more. The algorithm lends itself naturally to
parallelization (Weber et al., 2000). (Tesic et al., 2004) explores adaptive
VA-File for relevance feedback, based on optimizing the search through
use of information from previous feedback iterations.

2.5 extensions

The Vector Space Model described in this chapter falls into the family
of unsupervised learning methods. The bag-of-words model is its most
trivial example, in that no hidden (latent) structure is assumed to exist
in the data. “Learning” of the bag-of-words representation of a corpus
is straightforward: the corpus is described directly by the observed bag-
of-words vectors.

This is not ideal, as it

• assumes complete independence among the terms. The appear-
ance of the term “Barack” in a document is supposed to tell us
nothing about the word “Obama” appearing in the same docu-
ment, which is clearly not true.
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• more generally, it makes no assumptions about the generative pro-
cess that created the text, and as such cannot deal with polysemy,
synonymy and other common language phenomena

• wastes resources. Human language is a communication protocol
with a high degree of redundancy built in. Describing the content
in a more succinct form results in more efficient processing due to
the representation’s smaller footprint.

• does not offer insight into the essential corpus structure. Con-
nected to the previous point, a more abstract representation
promises to describe the content of a document in a more fun-
damental way, so that a similarity computed over these abstract
representations better matches our human intuition of “semantic
resemblance”.

The field of feature subset selection (see for example Yang and Peder-
sen (1997); Řehůřek and Pomikálek (2007)) attempts to address the third
point, by eliminating features (i.e., words) that add the least information
to the full set. The methods used there differ in how they quantify the
notion of “little information”. This is a way of reducing the computa-
tional complexity (by reducing the number of vector dimensions), but
it does not address the issue of explaining the more abstract, semantic
structure of text documents.

2.5.1 Latent Semantic Analysis

One of the earliest attempts to solve the aforementioned issues in a
principled manner is the Latent Semantic Analysis (LSA), also sometimes
called Latent Semantic Indexing in the Information Retrieval community
(Deerwester et al., 1990). Its main idea is to exploit term co-occurrence
to derive a set of latent concepts; words that frequently occur together are
assumed be more semantically associated (Kontostathis and Pottenger,
2006). This is in accordance with the statistical semantic hypothesis
mentioned earlier (Section 1.3), as it directly models the relationship
between words based on the contexts that they share. LSA analyzes
term co-occurrence of higher orders, so that it is able to incorporate the
relationship of words A, B which only co-occur in documents through
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a difference word, C, and never appear in the same document together
directly. In the same way, LSA is able to de-emphasize a connection
between two co-occurring terms that frequently co-occur with many
other terms at the same time.

LSA has also become popular in the field of Cognitive Science, where
it is believed LSA plausibly models some aspects of human cognition
(Foltz, 1996; Dumais and Landauer, 1997; Landauer, 2007). It has been
used as an automated essay grader (Foltz et al., 1998), in metaphor com-
prehension (Kintsch, 2000) or for intelligent tutoring systems (Graesser
et al., 2001). In one of the most widely cited studies, LSA equalled the
human performance of non-English speaking U.S. college applicants, on
a standard multiple-choice synonym test from the Test of English as a For-
eign Language (TOEFL). The scores achieved by LSA were adequate for
admission to many U.S. universities (Dumais and Landauer, 1997).

Numerically, each of the LSA concept can be viewed as a function
that accepts an m-dimensional vector on input and calculates a linear
combination (weighted sum) of its coordinates, a scalar. With k LSA
concepts, each input vector (i.e., document) is represented by a vector
in Rk. This transformation from the TF-IDF vector space into one
represented by the k latent concepts is realized through multiplication
by a suitable matrix, which places LSA into the category of linear models.
Finding the suitable projection matrix is done via the Singular Value
Decomposition (SVD) algorithm of linear algebra, described below, and
is computationally the most expensive part of LSA.

Use of the SVD algorithm makes LSA really just another member of
the broad family of applications that make use of SVD’s robust and
mathematically well-founded approximation capabilities2. In this way,
although I will discuss the results in Chapter 3 from the perspective and
terminology of LSA and Natural Language Processing, the results are in
fact applicable to a wide range of problems and domains across much
of the field of Computer Science. For a broader perspective on SVD,
LSA and topical models, see for example (Golub and Van Loan, 1996;
Dumais and Landauer, 1997; Griffiths et al., 2007).

2 Another member of that family is the discrete Karhunen–Loève Transform, from Image
Processing; or Signal Processing, where SVD is commonly used to separate signal from
noise. SVD is also used in solving shift-invariant differential equations, in Geophysics,
in Antenna Array Processing, . . .
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Singular Value Decomposition

The SVD algorithm finds matrices U, S and V such that

Am×n = Um×rSr×rVT
r×n, (2.4)

where r = rank(A) 6 min(m,n), U and V are column-orthonormal
and S a diagonal matrix with the main diagonal entries sorted in non-
increasing order. This decomposition always exists and the r columns
of U and V can be viewed as bases of new linear subspaces, called the
left and right subspace, respectively.

In LSA, reducing the representation footprint and at the same time
the source of semantic abstraction is the result of clipping the U, S, V
matrices to Ûm×k, Ŝk×k, V̂k×n of a lower rank k, k 6 r, which amounts
to using only the first k columns of U, V and the upper left k× k part
of S.

The power and popularity of SVD lies in the fact that truncating the
spectrum in this way gives us a provably best rank-k approximation
of the original matrix, Âm×n = Ûm×kŜk×kV̂T

k×n, in the sense that
Â = argmin

rank(X)6k
‖A − X‖F. This means that among all lossy (linear)

transformations of rank at most k, the one that is defined by the
truncated SVD manages to retain the greatest amount of variance of
the original data (Leach, 1995).

In the context of LSA, the truncated left and right subspaces Û, V̂ are
called the term and document subspaces, as the m rows of Û correspond
to latent rank-k representations of the original m terms, and likewise
the n rows of V̂ to the latent rank-k representations of the original
documents. The k columns of Û are called topics, or (latent) concepts,
and, as mentioned previously, are mutually orthogonal and form basis
for the term subspace. An example of terms and documents of the
corpus from Appendix A projected into the same 2-dimensional (k = 2)
latent space can be seen in Figure 2.1.

LSA critique

Despite its successes, LSA also suffers from several shortcomings:
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Figure 2.1.: A sample corpus from Appendix A when projected into a
2-dimensional LSA space. Both terms and documents are
projected into the same space. In LSA, the document vectors
are simply sums of their constituent term vectors, scaled by
the singular values. Similarity can be assessed by (the cosine
of) the angle between two documents (or terms).
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1. Choosing the optimal value for the k parameter (the latent space
dimensionality) is not obvious. In IR practice, the value is typically
set to several hundred, but depends on the application as well as
the structure of the input corpus (Řehůřek, 2007a; Bradford, 2008).

2. Topics are not interpretable. In other words, by looking at the m-
dimensional vector of a particular topic ti, i 6 k, it can be hard to
assign a human label to the theme connecting the highest scoring
terms (Griffiths and Steyvers, 2004). See Table 3.5 in Chapter 3

(page 61) for an example of some Wikipedia topics obtained by
LSA.
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3. Finding the U, S, V decomposition is costly. Although only a par-
tial decomposition is needed (the k greatest singular triplets), as
opposed to the full spectrum of rank r, for large data collections
even this is challenging. Common remedies include using SVD
algorithms that make use of A’s sparsity3 or parallelizing the com-
putation. Another field of research has been directed at optimizing
the cost of updates to the input matrix A. Rather than recomput-
ing SVD from scratch, incremental updating schemes have been pro-incremental SVD

updates posed, which allow one to alter an existing decomposition U, S, V
when new observations (or features) arrive (Levy and Lindenbaum,
2000; Brand, 2006; Řehůřek, 2010). This is especially relevant for
LSA, because in the IR domain, collections grow constantly and
some sort of incremental updating scheme is necessary.

2.5.2 Principal Component Analysis

Principal Component Analysis (PCA) is another method for exploratory
data analysis. It is closely related to the SVD from Latent Semantic
Analysis, in that it also finds the linear projection that minimizes the
average projection cost (mean squared distance between original data
points and their projection). The only difference is that it works over
a centered term-document matrix Âm×n, in which the feature mean has
been subtracted from each dimension, âij = aij − Ai∗.

PCA projects data into the (truncated) subspace spanned by the

eigenvectors Qm×k of the sample covariance matrix C ≡ 1
n−1ÂÂ

T
. Since

C is a Hermitian, positive-semidefinite matrix, according to the spectral
theorem a decomposition C = QΣQT always exists with Q column-
orthonormal and Σ real non-negative and diagonal. PCA thus uses
eigenvalue decomposition (EVD) of the mean-centered covariance matrix,
where LSA uses singular value decomposition of the original term-
document matrix. When Â = USVT , we have ÂÂT = U(STS)UT (V
is column-orthonormal so VTV = I vanishes). We see that Q = U
and S2 = Σ and the connection between PCA and LSA (i.e., betweenSVD vs. EVD

3 Ideally by accessing A only through its matrix-vector products λx : Ax, so that the
SVD algorithm can act as a “black-box” and work over input matrices of any structure,
provided an appropriate matrix-vector multiplication routine is supplied by the user.
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eigen decomposition and singular decomposition) becomes clear: U is
the EVD of ÂÂT , V is the EVD of ÂT Â and S =

√
Σ of either. Where

PCA computes only the term space projection U and scaling S2, LSA’s
singular value decomposition gives both U, S as well as the document
space projection V.

The ÂÂ
T

m×m sample covariance matrix is very large, and it is therefore
desirable to compute the decomposition directly over Â, rather than

going through the intermediate step of forming ÂÂ
T

explicitly. As this
decomposition is typically accomplished by SVD for accuracy reasons
anyway (Golub and Van Loan, 1996), we see that the only real difference
between PCA and LSA is using Â in place of A, that is, the data
centering. Subtracting the mean is a common practice in statistical
analysis (Miranda et al., 2008), where it amounts to removing a single
degree of freedom from the projection. With k− 1 additional degrees of
freedom left, the practical impact of performing centering is negligible
(Levy and Lindenbaum, 2000). More importantly, the centered Â matrix
is necessarily dense, even where the original A is sparse. This is
extremely undesirable, as the matrix consumes much more memory and
subsequent processing is slower.

As mentioned earlier, spectral decompositions like SVD and EVD have
a number applications:

• solving over-specified or under-specified systems of linear equa-
tions in physics,

• text processing in IR (Latent Semantic Analysis) discussed above,

• Google’s PageRank; finding the principal eigenvector of a random
walk matrix (Page et al., 1998),

• collaborative filtering and recommendation systems (Koren et al.,
2009),

• stylometric identification in authorship attribution (Abbasi and
Chen, 2006),

• image compression and computer vision (Zhang et al., 2002),
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• visualization of complex data in 2D4,

and many others. (Roweis and Ghahramani, 1999) give an excellent
overview of the connection between various linear models. They place
PCA, Hidden Markov Models (HMMs), Factor Analysis, Kalman filter
models (linear dynamical systems) and others in a single framework
of generative modelling. Within this framework, the methods differ
only in they way they are parametrized, allowing a direct comparison
of their inference schemes and highlighting model similarities (such as
the correspondence between the number of clusters in mixture models,
number of factors in factorization models or number of states in Hidden
Markov Models).

2.5.3 Non-Negative Matrix Factorization

Like LSA, Non-Negative Matrix Factorization (NMF) is a linear VSM that
attempts to identify bases of a space that can best explain variation in
the data (Lee and Seung, 2001). NMF decomposes the (non-negative)
input matrix A into two non-negative factors:

Am×n = Wm×kHk×n. (2.5)

This is in contrast to LSA, where the bases produced by SVD are a
combination of both positive and negative entries (words “positively”
and “negatively” correlated with a topic).

Iterative algorithms exist for finding W, H that minimize ‖A − WH‖,
where the norm is either the Euclidean distance or the Kullback-Leibler
divergence (Lee and Seung, 2001). These algorithms are approximative
and may result in local minima (unlike SVD, where the global optimum
is always guaranteed, barring numerical precision issues with ill condi-
tioned matrices).

As with LSA, the columns of W are interpreted as “latent (hidden) con-
cepts”, but generally offer better interpretability thanks to the absence
of negative entries and complex term cancellations. NMF was originally
applied to the domain of image segmentation (Lee and Seung, 2001), but

4 See also Self-Organizing Maps (SOM) for an alternative technique in the data visualiza-
tion domain (Kohonen, 1983).
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like other VSM techniques, its range of applicability also includes text
processing (Berry and Browne, 2005), recommendation systems5 (Koren
et al., 2009), speech and music analysis (Wilson et al., 2008; Févotte et al.,
2009), to cluster Scotch whiskies (Young et al., 2006) and so on.

2.5.4 Probabilistic Latent Semantic Analysis

Non-negative Matrix Factorization is closely related to another algo-
rithm for unsupervised text analysis: the Probabilistic Latent Semantic
Analysis (PLSA). PLSA was introduced in (Hofmann, 1999) and uses a
mixture model of k components to explain the data,

P(wi,dj) =

k∑
c=1

P(wi,dj|zc) =

k∑
c=1

P(zc)P(dj|zc)P(wi|zc), (2.6)

where z ∈ Z = {z1, . . . , zk} is the latent (unobserved) variable correspond-
ing to topics, d are the documents and w features.

Parameters of this joint distribution are estimated by maximizing
the likelihood of the observed bag-of-words corpus A, through an EM
algorithm (Hofmann, 1999). As with NMF, using an iterative algorithm
means that extra attention must be paid to the (speed of) convergence
issues, as well as the risk of finding only a local maximum.

The relationship between PLSA and NMF stems from interpreting the
P(wi,dj) joint probability as an (obviously non-negative) m× n matrix,
to be factorized into two matrices W ′

m×kH ′k×n, W ′ = P(wi|zc)P(zc) and
H ′ = P(dj|zc). PLSA therefore corresponds to factorizing

[
P(wi,dj)

]
into two non-negative factors. It has been shown that under the
Kullback-Leibler loss function and after suitable rescaling of A, any
(local) maximum likelihood solution of PLSA is equivalent to an NMF
solution and vice versa (Gaussier and Goutte, 2005; Ding et al., 2008).

5 A powerful impetus for NMF research and matrix decomposition algorithms in general
was the Netflix prize competition, 2006–2009.

http://www.netflixprize.com/
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2.5.5 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is another instance from a family of
mixed membership latent models, that is, models that model each obser-
vation as a manifestation of multiple latent (hidden) semantic topics. It
was first proposed in (Blei et al., 2003) and has been enjoying a lot of
research focus since, mainly thanks to its solid theoretical background.
LDA is a fully generative Bayesian model6, allowing principled exten-
sions and inference analyses.

LDA has been used in evolution of topics over time (Griffiths and
Steyvers, 2004), author-document models (Rosen-Zvi et al., 2004), image
processing (Fei-Fei and Perona, 2005), syntax-semantic models (Griffiths
et al., 2005), image-caption models (Blei and Jordan, 2003), anomaly
detection in video streams (Varadarajan et al., 2010) or network flow
analysis (Airoldi et al., 2007). In Chapter 4, I will be dealing with LDA
scalability, so I will describe its background in more detail here.

Bayesian inference

Consider the bag-of-words corpus of n (interchangeable) documents
A = {di}

n
i=1 as a sequence of i.i.d. realizations of some multinomial ran-

dom variable, parametrized by a set of parameters λ ∈ Λ. In this formu-
lation, to train the model means to infer λ from the observed data in A.
Bayesian modelling extends the point estimates of Maximum Likelihood
(MLE) and Maximum Aposteriori Estimate (MAP) and explicitly models
the whole posterior distribution. The benefits of Bayesian statistics are
well-known and include better confidence evaluation (by examining the
variance of the posterior) or using the posterior’s expectation (as op-
posed to likelihood maximum in MLE or mode of the posterior in MAP)
for data statistics (Gelman, 2004). The general formula follows from
Bayes’ rule,

P(λ|A) =
P(A|λ)P(λ)∫

Λ P(A|λ)P(λ)dλ
,

likelihood · prior
normalization

. (2.7)

6 In contrast to PLSA, where the documents are directly coupled with the model and the
model cannot be used for topic inference on documents outside of the training corpus.
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Figure 2.2.: Generative process of (smoothed) LDA as directed factor
graph. In this notation, circled nodes correspond to random
variables (observed variables are shaded), directed edges to
dependency between variables. Plates depict repetition of
the whole subgraph. See e.g. Dietz (2010) for a description
of graphical notations in generative probabilistic models.

In MLE (MAP) we are only interested in finding a λmax that maximizes
the likelihood (posterior) and can therefore omit the denominator. In
contrast, in full Bayesian analysis the normalization integral stays and is
often the most difficult part to evaluate.

To avoid computational difficulties, we may choose to restrict the form
of the nominator. One strategy is to choose the prior and likelihood dis-
tributions so that the posterior belongs to the same distribution as the
prior, only with different parameters. Combinations of prior and likeli-
hood distributions of this type are called conjugate prior-likelihood pairs7, conjugate prior
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and play a major role in practical Bayesian inference algorithms (Robert
and Casella, 2004). Examples of such conjugate prior-likelihood pairs
include Normal-Normal (i.e., with a normally distributed prior and
likelihood, the posterior is again normally distributed), Beta-Binomial,
Gamma-Poisson or (notably) Dirichlet-Multinomial.

LDA Inference

Latent Dirichlet Allocation uses a convex combination of k topic dis-
tributions to model observations (documents). The topic probabilities
themselves are conditioned on the input document, so that the full gen-
erative model can be described with Algorithm 2.1.

The latent parameter space therefore consists of β = {βi} (the word-by-
topic distribution, an m× k left stochastic matrix), θ = {θj} (the topic-by-
documents distribution, a k×n left stochastic matrix) and z = {zp,j} (the
topic indicators of each corpus word, with

∑n
j=1 |dj| free parameters).

See Figure 2.2 for the same process depicted in graphical form. The full
joint probability of this model is

P(w, z,θ,β|α,η) =

k∏
i=1

P(βi|η)

n∏
j=1

P(θj|α)

|dj|∏
p=1

P(zp,j|θj)P(wp,j|βzp,j),

(2.8)
where |dj| denotes the length of document j in words as before, and α
(resp. η) are priors on the document topic mixtures (resp. word-topic
distributions).

Inference of these parameters reverses the generative process from
Algorithm 2.1—instead of generating observed words from randomly
drawn β, θ and z, we are given the observed words and must estimate
these distributions, subject to maximizing data log-likelihood. Table 4.1
on page 76 gives an example of a document with highlighted topic
indicators z.

Although LDA represents a relatively straightforward model, its exact
inference is still intractable. Solutions to this problem include:

7 The data likelihood function P(A|λ) is typically fixed (determined by the problem), so
we only have freedom w.r.t. the choice of the prior distribution P(λ). For this reason,
the conjugate prior-likelihood pair is sometimes also called only conjugate prior, with
the likelihood left implicit, though still technically a pair.
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Algorithm 2.1: Generative process of words under Latent Dirichlet
Allocation

Input:
α: hyper-parameters on the document-topic mixing proportion (k-dimensional
vector or a scalar if symmetric).
η: hyper-parameters on the word-topic mixture components (m-dimensional
vector or a single scalar if symmetric).
Output:
Am×n corpus of m word types and n documents, with ai,j the frequency of term
i in document j.

// For each topic, draw a word-by-topic distribution φi.
foreach i ∈ {1, . . . ,k} do1

βi ∼ Dirichlet(η)2
end3

foreach document j ∈ {1, . . . ,n} do4
// Draw topic proportions θj.
θj ∼ Dirichlet(α)5
foreach word position p in document j, p ∈ {1, . . . , |dj|} do6

// Draw an indicator of which topic the word comes from.
zp,j ∼ Multinomial(θj)7
// Draw a word from that topic’s word distribution.
wp,j ∼ Multinomial(βzp,j)8

end9

end10

// Sum up individual occurrences of each word type in a document, to
get a bag-of-words frequency vector.

ai,j ←
∑
p (wp,j = i)11

mean-field variational em proposed in the original (Blei et al.,
2003). The core idea is that because we cannot optimize the
true posterior directly, we choose another family of distributions
(the variational distribution) that is tractable, whereby optimizing
variational parameters moves the variational distribution closer
to the true posterior (minimizes the Kullback-Leibler divergence
between them).

expectation propagation from (Minka and Lafferty, 2002).

gibbs sampling as a special instantiation of the Markov-Chain Monte
Carlo (MCMC) methods. Gibbs sampling avoids the difficulties of MCMC
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dealing with the full joint probability samples by sampling each
variable in turn, conditionally independent of all other variables,
to produce a chain of samples. In its limit, this chain converges to
the true joint probability (Robert and Casella, 2004).

collapsed gibbs sampling analytically integrates out the latent pa-
rameters β and θ (which can be done thanks to the Dirichlet-
Multinomial conjugacy) and models the topic indicators P(z|w)

directly (Griffiths and Steyvers, 2004).

collapsed variational inference combines the idea of col-
lapsed Gibbs sampling (marginalizing out β and θ) followed by
the mean field variation algorithm that approximates the posterior
over topic assignments z (Teh et al., 2007).

Methods based on Gibbs sampling are more Bayesian in nature and
track the true posterior; their problem lies in not knowing when we
have performed “enough iterations”, that is, when the Markov chain has
sufficiently converged to our solution. In practice, we let Gibbs sampling
run for a certain fixed amount of corpus iterations (the burn-in, typically
in the hundreds or thousands) and only then start collecting samples. It
is also not clear how to relate the samples (the ordering of columns in
β is arbitrary) to get a coherent set of topics (Teh et al., 2007). Mean-
field methods, on the other hand, are guaranteed to converge to a (local)
optimum, and typically do so in a smaller number of iterations. Unlike
MCMC, they are not dependent on prior conjugacy and can therefore be
applied to inference on a broader class of models. Their disadvantage
lies in the fact that there is an error introduced by choosing, and
optimizing parameters on, a different family of distributions (of which
the true posterior is certainly not a member). This bias may result in
wildly incorrect parameter estimation, depending on how well we pick
the variational distribution.

The α (resp. η) hyper-parameters affect sparsity of the document-topic
(resp. word-topic) mixtures. Intuitively, higher concentration values lead
to sparser mixtures: fewer relevant words per topic in φ for β, or fewer
relevant topics per document in θ for α. See (Wallach et al., 2009) and
(Asuncion et al., 2009) for a detailed discussion of these hyper-parameter
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priors, including introduction of asymmetric priors on α and η (also cf.
Section 27 in (Knight, 2009)).

2.6 blas and lapack

The previous sections briefly summarized several semantic VSM models
that have been found successful in a variety of applications. For each
method, I tried to list a broader range of (published) applications,
without restricting them to the NLP or text processing domains. All
the models capture semantic content through explicit use of statistics,
so that their performance degrades gradually in the face of input noise,
without a sharp discrete drop to uselessness. Another connecting
feature is their focus on tractability and reasonable performance, even
at the cost of making unrealistic assumptions during model training or
even during modelling itself.

The wide applicability to many domains stems from their well under-
stood theoretical foundation, where the inference problems have been
delegated to the fields of linear algebra and/or probabilistic reasoning.
In this way, advances in these fields contingently improve performance
of the semantic methods. A building block at the heart of many algo-
rithms are matrix manipulation routines. Matrix manipulations have
been used in Computer Science since its inception (or, put differently,
played an important role in its inception). Consequently, there exists a
well established research field dealing with improving the efficiency and
numerical stability of algorithms for common linear algebra operations.

One of the most famous examples is the Basic Linear Algebra Subrou-
tines (BLAS) specification, which is conceptually divided into three lev- BLAS
els:

• Level 1 BLAS: Basic vector operations, vector norms, dot products
etc.

• Level 2 BLAS: Matrix-vector operations.

• Level 3 BLAS: Matrix-matrix operations.

Another example is LAPACK, a library for solving systems of linear LAPACK
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equations and matrix decompositions built on top of BLAS, which su-
perceded the older EISPACK and LINPACK libraries. Practically every
major hardware vendor offers its own, heavily optimized implementa-
tion for the LAPACK or at least BLAS library: examples include Intel
with its Math Kernel Library (MKL), AMD’s Core Math Library (AMCL),
Apple’s vecLib, Sun’s Sunperf, as well as open-sourced implementations
like Automatically Tuned Linear Algebra Software (ATLAS), netlib’s LA-
PACK, Kazushige Goto’s GotoBLAS, the eigen3 template library, . . . As
these routines are used in high performance computing, a lot of effort
has been put into their efficient implementations (Anderson et al., 1990).
The work on scalability presented in the following chapters naturally
devolves on these basic building blocks.

http://math-atlas.sourceforge.net/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://eigen.tuxfamily.org
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T H E S C A L A B I L I T Y C H A L L E N G E
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Size matters.
(anonymous)

The gap between the amount of digitally available data and our
ability to analyze and understand it is widening. Many methods that
offer otherwise excellent results require simply too many resources
to be applied to modern datasets. Problems that were considered
“solved” decades ago re-appear, as raising the amount of input data
by orders of magnitude invariably opens up new challenges, requiring
new solutions.

In a way, our seemingly never-ending need to process vaster and
vaster datasets comes as no surprise. As the AI techniques get more
and more sophisticated, so do human expectations of them. There is
always a more challenging problem around the corner, a trickier dataset,
another group of dissatisfied users. The most exciting Machine Learning
problems always seem to be one step ahead of our available, proven
“solutions”.

The scalability challenge discussed in this chapter will come in two
forms: better use of available processing power (scaling in time) and
making processing of large input feasible on computers with limited
memory (scaling in space). The first problem is typically solved by devis-
ing a scheme to split the problem into smaller subproblems to distribute
the computation (and then merge the partial solutions), the latter by
focusing on models and techniques that summarize all necessary infor-
mation in a constant amount of space, independent of the size of the
training set.



3
L AT E N T S E M A N T I C A N A LY S I S

This chapter presents original advances in the theory of scalability of the
Latent Semantic Analysis (LSA). The goal is to compute Singular Value
Decomposition (the matrix decomposition algorithm at the core LSA)
efficiently, in a distributed manner in a small number of passes over the
input document stream.

Preliminary results described here were first presented at the 3rd In-
ternational Conference on Agents and Artificial Intelligence (Řehůřek, 2011a),
followed by a full account at the 33rd European Conference on Informa-
tion Retrieval (ECIR) (Řehůřek, 2011b). Analysis of the large scale ex-
periments described in Section 3.5 appeared at the Low-rank Methods for
Large-scale Machine Learning workshop at the Neural Information Process-
ing Systems (NIPS) 2010 conference (Řehůřek, 2010).

3.1 motivation

Matrix decomposition algorithms are commonly used in a variety of
domains across much of the field of Computer Science. One of the
most widely used matrix decomposition algorithms is the Singular
Value Decomposition (SVD), or its closely related eigen decomposition
(EVD). These produce a provably optimal (in the least-squares sense)
rank-k factorizations when truncated, see Section 2.5.1. In the following,
n will denote the number of observations (matrix columns), m the
number of features (matrix rows) and k the truncated target rank,
k � m � n. In practice, the optimal decompositions are notoriously
expensive to compute and truly large-scale applications are rare (Zha
et al., 1998; Vigna, 2008). The most common remedy is a) approximation
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http://www.icaart.org/
http://www.icaart.org/
http://ecir2011.dcu.ie/
http://ecir2011.dcu.ie/
http://www.eecs.berkeley.edu/~ameet/low-rank-nips10/
http://www.eecs.berkeley.edu/~ameet/low-rank-nips10/
http://nips.cc/
http://nips.cc/
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(subsampling the input), b) some sort of incremental updating scheme
which avoids recomputing the truncated models from scratch every time
an observation/feature is updated, or c) giving up on a globally optimal
solution and using another, heuristic algorithm. One way or another,
the algorithm must avoid asking for O(n) memory, as the number of
observations is assumed to be too large in modern problems.

In this chapter I will introduce two modern approaches to large-
scale eigen decomposition that satisfy these criteria: a novel one-pass
streamed distributed algorithm and a modified stochastic streamed two-
pass algorithm based on (Halko et al., 2009). Both are streamed, mean-
ing no random access to observations is required and their memory
requirements are constant in the number of observations. I will also
present a hybrid of the two methods here, an algorithm which takes
advantage of the speed of two-pass stochastic approach while retaining
the one-pass quality of the other algorithm.

As a short recapitulation of Section 2.5.1, Latent Semantic Analysis
assumes that each document (or, more generally, observation) can be
described using a fixed set of real-valued features (variables). These fea-
tures capture the usage frequency of distinct words in the document,
and are typically re-scaled by some TF-IDF scheme (Salton, 1971). How-
ever, no assumption is made as to what the particular features are or
how to extract them from raw data—LSA simply represents the input
data collection of n documents, each described by m features, as a ma-
trix A ∈ Rm×n, with documents as columns and features as rows.

In the context of LSA, we can represent documents in a space of much
lower dimensionality, k � m, both saving resources and getting rid of
data noise at the same time. For this reason, SVD can be viewed both
as a dimensionality reduction and a noise reduction process, improving
efficiency and efficacy at the same time.

3.1.1 SVD Characteristics

In terms of practical ways of computing SVD, there is an enormous
volume of literature (William et al., 1988; Comon and Golub, 1990; Golub
and Van Loan, 1996; Zha and Simon, 1999). The algorithms are well-
studied and enjoy favourable numerical properties and stability, even in
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Table 3.1.: Selected algorithms for truncated, partial eigen-decomposi-
tion and their characteristics. “—” stands for no/not found.

Algorithm Distrib. Incremental in # passes Subspace Implementations
observ. features tracking

Krylov subspace
methods (Lanczos,
Arnoldi)

yes — — O(k) — PROPACK, ARPACK,
SVDPACK, MAHOUT,
. . .

(Halko et al., 2009) yes — — O(1) — redsvd, pca.m, our own
(Gorrell and Webb,
2005)

— — — O(k) — LingPipe, our own

(Zha and Simon,
1999)

— yes yes 1 yes —, our own

(Levy and
Lindenbaum, 2000)

— yes — 1 yes —, our own

(Brand, 2006) — yes yes 1 — —, our own
(Řehůřek, 2011b) yes yes — 1 yes our own, open-sourced

the face of badly conditioned input. They differ in their focus on what
role SVD performs—batch algorithms vs. online updates, optimizing
FLOPS vs. number of passes, prioritizing accuracy vs. speed etc.

Table 3.1 enumerates several such interesting characteristics, and
evaluates them for a selected set of known algorithms. Its columns have
the following interpretation:

distributable Can the algorithm run in a distributed manner? Here,
I only consider distribution of a very coarse type, where each com-
puting node works autonomously. This type of parallelization is
suitable for clusters of commodity computers connected via stan-
dard, high-latency networks, as opposed to specialized hardware,
supercomputers or fine threading.

incremental updates Is the algorithm capable of updating its de-
composition as new data arrives, without recomputing everything
from scratch? The new data may take form of new observations
(documents), or new features (variables). Note that this changes
the shape of the A matrix. With LSA, we are more interested in
whether we can efficiently add new documents, rather than new
features. The reason is that vocabulary drift (adding new words;
old words acquiring new meanings) is a relatively slow phenom-
ena in natural languages, while new documents appear all the
time.

http://soi.stanford.edu/~rmunk/PROPACK/
http://www.caam.rice.edu/software/ARPACK/
http://www.netlib.org/svdpack/
http://mahout.apache.org/
http://code.google.com/p/redsvd/
http://cims.nyu.edu/~tygert/pca.m
http://alias-i.com/lingpipe/
http://nlp.fi.muni.cz/projekty/gensim/
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matrix structure Does the algorithm make use of the structure of
the input matrix? In particular, does the algorithm benefit from
sparse input? Algorithms that can be expressed in terms of Basic
Linear Algebra Subprograms (BLAS) routines over the input matrix
are relatively easily adapted to any type of input structure.

Another possible distinction here is whether data can be incre-
mentally subtracted from an existing decomposition, resulting in
a “downdate”.

subspace tracking In online streaming environments, new observa-
tions come in asynchronously and the algorithm cannot in gen-
eral store all the input documents in memory (not even out-of-
core memory). The incoming observations must be immediate
processed and then discarded1.

Being online has implication on the decomposition itself, because
we cannot even afford to keep the truncated right singular vectors
V in memory. The size of Vn×m is O(n), linear in the number of
input documents, which is prohibitive. Therefore, only the U,S
matrices are retained and the decomposition is used as a predictive
(rather than descriptive) model. We call the Pm×m ≡ S−1UT matrix
the projection matrix, and the projection process Vx = P · x is called
folding-in in the context of LSA2.

In such subspace tracking scenario, the input data stream can
be assumed to be non-stationary. This allows us to introduce
an explicit factor for “forgetting” old observations and adjusting
the decomposition in favour of new data. This is realized by
introducing a parameter γ ∈ 〈0.0, 1.0〉, called the decay factor, which
dictates the rate of discounting the relevancy of old observations.

1 This is in contrast to offline, batch algorithms, where the whole dataset is presented at
once and the algorithm is allowed to go back and forth over the dataset many times.

2 Note that folding-in is different to updating the decomposition: during folding-in, the
U, S matrices stay intact and an existing model is only used to predict positions of
documents in the latent space. In particular, VTm×n = S−1UTA = Pm×mAm×n, so
that even though we cannot store the right singular vectors VT during computations,
they can still be recovered in a streaming fashion if needed, provided one has access
to the projection matrix P and the original collection A.
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available implementations While secondary from a theoretical
point of view, I consider the availability of a real, executable ref-
erence implementation critical for a method’s adoption. The appli-
cation of LSA is relevant to a wider audience who simply do not
possess the time or motivation to disentangle terse mathematical
equations into functional programs. I also observe that most of the
existing SVD implementations (with the notable exceptions of the
Apache MAHOUT project and LingPipe) are written in somewhat
opaque, FORTRANish style of coding, even when implemented in
other languages.

3.1.2 Related Work

Historically, most research on SVD optimization has gone into Krylov
subspace methods, such as Lanczos-based iterative solvers (see e.g.
(Vigna, 2008) for a recent large scale Lanczos-based SVD effort). Our
problem is, however, different in that we can only afford a small, constant
number of passes over the input corpus (Krylov subspace solvers require
O(k) passes in general). The special case where the decomposition must
be updated on-the-fly, in a single pass and in constant memory (for
example, whenever the stream of observations cannot be repeated or
even stored in off-core memory), can be viewed as an instance of subspace
tracking. See (Comon and Golub, 1990) for an excellent overview on the
complexity of various forms of matrix decomposition algorithms in the
context of subspace tracking.

An explicitly formulatedO(m(k+ c)2) method (where c is the number
of newly added documents, the increment) for incremental LSA updates
is presented in (Zha and Simon, 1999). They also give formulas for up-
dating rows of A as well as rescaling row weights. Their algorithm is
completely streamed and runs in constant memory. It can therefore also
be used for online subspace tracking, by simply ignoring all updates to
the right singular vectors V. The complexity of updates was further re-
duced in (Brand, 2006) who proposed a linear O(mkc) update algorithm
by a series of c fast rank-1 updates. However, in the process, the ability
to track subspaces is lost: the improvement is realized by appending

http://mahout.apache.org/
http://alias-i.com/lingpipe/
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new columns to the orthonormal basis U each time this basis has insuf-
ficient rank, avoiding the costly O(mk2) rotations otherwise necessary
to keep U in truncated form. As there are in general O(n) rank increas-
ing updates, this means U grows to consume O(n) memory, which is
prohibitive in subspace tracking. Their approach is akin to the k-Nearest
Neighbours (k-NN) method of Machine Learning: the lightning speed
during training is offset by memory requirements of storing the model.

These methods concern themselves with adding new documents to
an existing decomposition. What is needed for a distributed version
of LSA is a slightly different task: given two existing decompositions,
merge them together into one. I did not find any explicit, efficient
algorithm for merging decompositions in the literature. I will therefore
seek to close this gap, provide such algorithm and use it for computing
distributed LSA. The following section describes the algorithm and
states conditions under which the merging makes sense when dealing
with only truncated rank-k approximation of the decomposition.

3.2 distributed single pass algorithm

In this section, I derive an algorithm for distributed online computing
of LSA over a cluster of computers, in a single pass over the input
matrix. The algorithm is flexible enough to also realize subspace
tracking (only tracking the term space Um×k, while ignoring updates
to the (prohibitively large) document space Vn×k), and includes an
optional model decay factor to account for subspace drift through its
γ parameter.

3.2.1 Overview

Distribution will be achieved by column-partitioning the input matrix A
into several smaller submatrices, called jobs,

Am×n =
[
Am×c1
1 , Am×c2

2 , · · · , Am×cj
j

]
,
j∑
i=1

ci = n.

Since columns of A correspond to documents, each job Ai amounts to
processing a chunk of ci input documents. The sizes of these chunks are
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chosen to fit available resources of the processing nodes: bigger chunks
mean faster overall processing but on the other hand consume more
memory.

Jobs are then distributed among the available cluster nodes, in no
particular order, so that each node will be processing a different set of
column-blocks from A. The nodes need not process the same number
of jobs, nor process jobs at the same speed; the computations are
completely asynchronous and independent. Once all jobs have been
processed, the decompositions accumulated in each node will be merged
into a single, final decomposition P = (U, S) (see Section 3.1.1 on
subspace tracking for where VT disappeared). As a reminder, U and
S are respectively an orthonormal and a diagonal matrix such that
A = USVT , or equivalently and perhaps more naturally for avoiding
mentioning the unused VT , such that AAT = US2UT . The former
factorization is called the Singular Value Decomposition, the latter is
its related eigen decomposition.

What is needed are thus two algorithms:

1 . base decomposition : In main memory, find Pi = (Um×ci
i , Sci×cii )

eigen decomposition of a single job Am×ci
i such that AiAT

i =

UiS2iU
T
i .

2 . merge decompositions : Merge Pi = (Ui, Si), Pj = (Uj, Sj) of
two jobs Ai, Aj into a single decomposition P = (U, S) such that[
Ai, Aj

] [
Ai, Aj

]T
= US2UT . Merging will allow us to construct

the final decomposition of A in a hierarchical manner, starting
with merging the base decompositions, then merging the merged
results and so on, up to the decomposition of the whole matrix A.

I would like to highlight the fact that the first algorithm will perform
decomposition of a sparse input matrix, while the second algorithm
will merge two dense decompositions into another dense decomposition.
This is in contrast to incremental updates discussed in the literature
(Brand, 2006; Levy and Lindenbaum, 2000; Zha and Simon, 1999), where
the existing decomposition and the new documents are mashed together
into a single matrix, losing any potential benefits of sparsity as well as
severely limiting the possible size of a job due to increased memory
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requirements. The explicit merge procedure also makes the distributed
version of the algorithm straightforward, so that the computation can be
split across a cluster of computers.

3.2.2 Solving the Base Case

In Latent Semantic Analysis, density of the job matrices is well below
1%, so a sparse solver is called for. Also, a direct sparse SVD solver
of Ai is preferable to the roundabout eigen decomposition of AiAT

i ,
both to save memory and to improve numerical accuracy (see e.g.
(Golub and Van Loan, 1996)). Finally, because k � m, a partial
decomposition is required which only returns the k greatest factors—
computing the full spectrum would be a terrible overkill. There exist
a multitude of partial sparse SVD solvers that work in-core. We view
the particular implementation as “black-box” and note that the Lanczos-
based implementations mentioned in Table 3.1 are particularly suitable
for this in-memory task.

3.2.3 Merging Decompositions

No efficient algorithm (as far as I know) exists for merging two truncated
eigen decompositions (or SVD decompositions) into one. I therefore
propose my own, novel algorithm here, starting with its derivation and
summing up the final version in the end.

The problem can be stated as follows. Given two truncated eigen
decompositions P1 = (Um×k1

1 , Sk1×k11 ), P2 = (Um×k2
2 , Sk2×k22 ), which

come from the (by now lost and unavailable) input matrices Am×c1
1 ,

Am×c2
2 , k1 6 c1 and k2 6 c2, find P = (U, S) that is the eigen

decomposition of
[
A1, A2

]
.

Our first approximation will be the direct naïve

U, S2
eigen←−−−

[
U1S1, U2S2

] [
U1S1, U2S2

]T . (3.1)

This is terribly inefficient, and forming the matrix product of size
m×m on the right hand side is prohibitively expensive. Writing SVDk

for truncated SVD that returns only the k greatest singular numbers and
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their associated singular vectors, we can equivalently write

U, S, VT SVDk←−−−
[
γU1S1, U2S2

]
. (3.2)

This is more reasonable, with the added bonus of increased numerical
accuracy over the related eigen decomposition. Note, however, that the
computed right singular vectors VT are needed at all, which is a sign
of further inefficiency. Also, the fact that U1, U2 are orthonormal is
completely ignored. This leads us to break the algorithm into several
steps:

Algorithm 3.1: Baseline merge

Input: Truncation factor k, decay factor γ, P1 = (Um×k1
1 , Sk1×k11 ),

P2 = (Um×k2
2 , Sk2×k22 )

Output: P = (Um×k, Sk×k)

Q, R
QR←−−

[
γU1S1, U2S2

]
1

UR, S, VT
R

SVDk←−−− R2

Um×k ← Qm×(k1+k2)U(k1+k2)×k
R3

On line 1, an orthonormal subspace basis Q is found which spans
both of the subspaces defined by columns of U1 and U2, span(Q) =

span(
[
U1, U2

]
). Multiplications by S1, S2 and γ provide scaling for R

only and do not affect Q in any way, as Q will always be column-
orthonormal. Our algorithm of choice for constructing the new basis
is QR factorization, because we can use its other product, the upper
trapezoidal matrix R, to our advantage. 3 Now we’re almost ready to
declare (Q, R) our target decomposition (U, S), except R is not diagonal.
To diagonalize the small matrix R, we perform an SVD on it, on line 2.
This gives us the singular values S we need as well as the rotation of
Q necessary to represent the basis in this new subspace. The rotation

3 The subspaces spanned by U1 and U2 will often intersect, which causes dim(Q) = s <

k1+k2 = dim(U1)+ dim(U2) and R will have zeros on the diagonal. Implementations
of the QR algorithm will typically permute R, pushing the s− (k1+ k2) diagonal zeros
only after all non-zeros, restoring diagonal shape in the upper left part of R. This is of
no consequence to our discussion, because Q is always permuted accordingly.
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is applied on line 3. Finally, both output matrices are truncated to
the requested rank k. The costs are O(m(k1 + k2)

2), O((k1 + k2)
3) and

O(m(k1 + k2)
2) for line 1, 2 and 3 respectively, for a combined total of

O(m(k1 + k2)
2).

Although more elegant than the direct decomposition given by Equa-
tion 3.2, the baseline algorithm is only marginally more efficient than the
direct SVD. This comes as no surprise, as the two algorithms are quite
similar and SVD of rectangular matrices is often internally implemented
by means of QR in exactly this way. Luckily, we can do better.

First, we observe that the QR decomposition makes no use of the fact
that U1 and U2 are already orthogonal. Capitalizing on this will allow
us to represent U as an update to the existing basis U1, U =

[
U1, U ′

]
,

dropping the complexity of the first step to O(mk22). Secondly, the
application of rotation UR to U can be rewritten as UUR =

[
U1, U ′

]
UR =

U1R1 + U ′R2, dropping the complexity of the last step to O(mkk1 +

mkk2). Plus, the algorithm can be made to work by modifying the
existing matrices U1, U2 in place inside BLAS routines, which is a
considerable practical improvement over Algorithm 3.1, which requires
allocating additional m(k1 + k2) floats.

Algorithm 3.2: Optimized merge

Input: Truncation factor k, decay factor γ, P1 = (Um×k1
1 , Sk1×k11 ),

P2 = (Um×k2
2 , Sk2×k22 )

Output: P = (Um×k, Sk×k)

Zk1×k2 ← UT
1U21

U ′, R
QR←−− U2 − U1Z2

UR, S, VT
R

SVDk←−−−
[
γS1 ZS2
0 RS2

](k1+k2)×(k1+k2)

3 [
Rk1×k1

Rk2×k2

]
= UR

4

U← U1R1 + U ′R25



3.2 distributed single pass algorithm 47

The first two lines construct the orthonormal basis U ′ for the compo-
nent of U2 that is orthogonal to U1; span(U ′) = span((I − U1UT

1 )U2) =

span(U2 − U1(UT
1U2)).

As before, we use QR factorization because the upper trapezoidal
matrix R will come in handy when determining the singular vectors S.

Line 3 is perhaps the least obvious, but follows from the requirement
that the updated basis

[
U, U ′

]
must satisfy[

U1S1, U2S2
]

=
[
U1, U ′

]
X, (3.3)

so that

X =
[
U1, U ′

]T [U1S1, U2S2
]

=

[
UT
1U1S1 UT

1U2S2
U ′TU1 U ′TU2S2

]
. (3.4)

Using the equalities R = U ′TU2, U ′TU1 = 0 and UT
1U1 = I (all by

construction) we obtain

X =

[
S1 UT

1U2S2
0 U ′TU2S2

]
=

[
S1 ZS2
0 RS2

]
. (3.5)

Line 4 is just a way of saying that on line 5, U1 will be multiplied by
the first k1 rows of UR, while U ′ will be multiplied by the remaining k2
rows. Finally, line 5 seeks to avoid realizing the full

[
U1, U ′

]
matrix in

memory and is a direct application of the equality[
U1, U ′

]m×(k1+k2) U(k1+k2)×k
R = U1R1 + U ′R2. (3.6)

As for complexity of this algorithm, it is again dominated by the
matrix products and the dense QR factorization, but this time only of
a matrix of size m× k2. The SVD of line 3 is a negligible O(k1 + k2)

3,
and the final basis rotation comes up to O(mk max(k1,k2)). Overall,
with k1 ≈ k2 ≈ k, this is an O(mk2) algorithm.

In Section 3.4, I will compare the runtime speed of both these pro-
posed merge algorithms on real corpora.

3.2.4 Effects of Truncation

While the equations above are exact when using matrices of full rank,
it is not at all clear how to justify truncating all intermediate matrices
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to rank k in each update. What effect does this have on the merged
decomposition? How do these effects stack up as we perform several
updates in succession?

In (Zha and Zhang, 2000), the authors identified general conditions
under which operating with truncated matrices produces exact results.
Their results are applicable to our algorithm as well. Moreover, they
show by way of perturbation analysis that the results are stable (though
no longer exact) even if the input matrix only approximately satisfies
this condition. They investigate matrices of the so-called low-rank-plus-
shift structure, which (approximately) satisfy

ATA/m ≈ CWCT + σ2In, (3.7)

where C, W are of rank k, W positive semi-definite, σ2 the variance of
noise. That is, ATA can be expressed as a sum of a low-rank matrix and
a multiple of the identity matrix. They show that matrices coming from
natural language corpora under the bag-of-words paradigm do indeed
possess the necessary structure and that in this case, a rank-k approxima-
tion of A can be expressed as a combination of rank-k approximations
of its submatrices without a serious loss of precision,

bestk(
[
A1, A2

]
) = bestk(

[
bestk(A1), bestk(A2)

]
). (3.8)

Interestingly, the authors realize the potential for a divide-and-
conquer style distributed algorithm stemming from this formula. How-
ever, they only present a serial version for incrementally adding new
documents. In a rather Fermat-like fashion, they gloss over the dis-
tributed version with “Due to space limitation, the high performance
computing issues related to the divide-and-conquer approach will not
be further discussed here.” (Zha et al., 1998) and proceed to describe
a Lanczos-based (non-incremental) MPI implementation of distributed
SVD, which is a batch algorithm unsuitable for streaming environments.

3.2.5 Putting It Together

Let N = {N1, . . . ,Np} be the p available cluster nodes. Each node
will be processing incoming jobs sequentially, running the base case
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decomposition on each job followed by merging the result with the
current model by means of Merge Algorithm 3.1 or 3.2.

Algorithm 3.3: LSA_Node_Ni
Input: Truncation factor k, Queue of jobs A1, A2, . . .
Output: P = (Um×k, Sk×k) decomposition of

[
A1, A2, . . .

]
P = (U, S)← 0m×k, 0k×k1

foreach job Ai do2

P ′ = (U ′, S ′)← Basecase_Algo(k, Ai)3

P ←Merge_Algo(k,P,P ′)4

end5

To construct decomposition of the full matrix A, we let the p nodes
work in parallel, distributing the jobs as soon as they arrive, to
whichever node seems idle. I do not describe the technical issues of load
balancing and recovery from node failure here, but standard practices
apply4. Once we have processed all the jobs (or temporarily exhausted
the input job queue, in the infinite streaming scenario), we merge the p
individual decompositions into one, by means of Merge Algorithm 3.1
or 3.2.

Algorithm 3.4: Distributed LSA
Input: Truncation factor k, Queue of jobs A =

[
A1, A2, . . .

]
Output: P = (Um×k, Sk×k) decomposition of A

Pi = (Ui, Si)← LSA_Node_Ni(k, subset of jobs from A), for1

i = 1, . . . ,p
P ← Reduce(Merge_Algo, [P1, . . . ,Pp])2

Here, line 1 is executed in parallel, making use of all p processing
nodes at once, and is the source of parallelism of the algorithm. On
line two, Reduce applies the function that is its first argument cummula-
tively to the sequence that is its second argument, so that it effectively

4 A note on implementation: there are a number of available choices for a parallel
programming frameworks: the MPI standard (with its Open MPI implementation),
the Parallel Virtual Machine (PVM) or Remote Procedure Calls (RPC).

http://www.open-mpi.org/
http://www.csm.ornl.gov/pvm/
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merges P1 with P2, followed by merging that result with P3, etc. Several
divide-and-conquer schemes that realize this final merging are possible.
A particularly appealing one is where the p decompositions are merged
in pairs coming from approximately the same number of input docu-
ments, so that the two sets of merged singular values are of comparable
magnitude. Doing so promises to lead to improved numerical proper-
ties, but I have not investigated this effect in detail.

The algorithm is formulated in terms of a (potentially infinite) se-
quence of jobs, so that when more jobs arrive, we can continue updating
the decomposition in a natural way. The whole algorithm can act as
a continuous daemon service, providing LSA decomposition of all the
jobs processed so far on demand.

3.3 streamed two pass algorithm

As far as I know, the algorithm derived in the previous section is
the first published distributed single pass decomposition algorithm for
streaming data collections. If we relax the constraint on the number
of passes to a small, constant number (though no longer necessarily
one), we can also use the algorithm from (Halko et al., 2009) for in-
core decompositions. They describe several variants of this efficient
stochastic algorithm and analyze their properties. However, the one-
pass stochastic algorithm as described there is unsuitable for large-scale
decompositions, because the computation requires O(nk+mk) memory.

I propose we can reduce this to a manageable O(mk), i.e. independent
of the input stream size n, at the cost of running two passes over the input
matrix instead of one5. This is achieved by two optimizations:

1. the sample matrix is constructed piece-by-piece from the stream,
instead of a direct matrix multiplication, and

2. the final dense decomposition is performed on a smaller k × k
eigenproblem BBT instead of the full k×n matrix B.

These two optimizations allow us to compute the decomposition in
constant memory, by processing the observations one after another, or,

5 Actually, 2+ q passes are needed when using q power iterations.
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preferably, in as large chunks as fit into core memory. The result is
summarized in Algorithm 3.5, an O(1) pass algorithm published in
(Řehůřek, 2010). Although this algorithm is no longer single-pass, it only
requires a small, constant number of passes over the input collection,
and may therefore still be a good choice in some circumstances. It is
worth pointing out at this place that streamed one-pass algorithms (like
the one described earlier) are fundamentally different from the 2-pass
algorithm described here (or any other q-pass algorithm, albeit with a
small q > 1), in that they allow us to process infinite input streams. infinite input

streamsIn environments where the input cannot be persistently recorded and
stored, a single pass algorithm is the only option.

3.3.1 Hybrid Single Pass Algorithm

Although the two-pass Algorithm 3.5 cannot be directly used in single-
pass environments, we can use the flexibility of the distributed single
pass algorithm and plug the stochastic decomposition as the “black-box”
Basecase decomposition into Algorithm 3.3.
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Algorithm 3.5: Two-pass Stochastic Decomposition in Constant
Memory with Streamed Input

Input: m×n input matrix A, presented as a stream of observation chunks
A =

[
A1, A2, . . . , AC

]
. Truncation factor k. Oversampling factor l.

Number of power iterations q.
Output: U, S2 spectral decomposition of A (i.e., US2UT = AAT ) truncated

to the k greatest factors.
Data: Intermediate matrices require O(m(k+ l)) memory; in particular,

the algorithm avoids materializing any O(n) or O(m2) size matrices.

// Construct the m× (k+ l) sample matrix Y = AO, in one pass

over the input stream.

Y← sum(AiOi for Ai in A) ; // each Oi is a random |Ai|× (k+ l)1

gaussian matrix

// Run q power iterations to improve accuracy (optional),

Y = (AAT )qAO. Needs q extra passes.

for iteration← 1 to q do2

Y← sum(Ai(ATi Y) for Ai in A);3

end4

// Construct the m× (k+ l) orthonormal action matrix Q, in-core.

Q← orth(Y);5

// Construct (k+ l)× (k+ l) covariance matrix X = BBT in one

pass, where B = QTA.

X← sum((QTAi)(QTAi)T for Ai in A) ; // BLAS rank-k update routine6

SYRK

// Compute U, S by means of the small (k+ l)× (k+ l) matrix X.
UX, SX ← eigh(X);7

// Go back from the eigen values of X to the eigen values of B
(= eigen values of A).

S2 ← first k values of
√

SX;8

U← first k columns of QUX;9
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3.4 experiments

In this section, I will describe two sets of experiments. The first set
concerns itself with numerical accuracy of the proposed single-pass
algorithm, the second with its performance.

In all experiments, the decay factor γ is set to 1.0, that is, there is no
discounting in favour of new observations. The number of requested
factors is k = 200 for the small and medium corpus and k = 400 for the
large Wikipedia corpus.

3.4.1 Algorithms

I will be comparing four implementations for partial Singular Value
Decomposition:

svdlibc A direct sparse SVD implementation due to Douglas Rohde6.
SVDLIBC is based on the SVDPACK package by Michael Berry
(Berry, 1992). I used its LAS2 routine to retrieve only the k

dominant singular triplets.

zms implementation of the incremental one-pass algorithm from (Zha
et al., 1998). All the operations involved can be expressed in terms
of Basic Linear Algebra Subroutines (BLAS). For this reason I use
the NumPy library, which makes use of whatever LAPACK library
is installed in the system, to take advantage of fast blocked rou-
tines. The right singular vectors and their updates are completely
ignored so that my implementation of their algorithm also realizes
subspace tracking.

dlsa My proposed method. I will be evaluating two different versions
of the merging routine, Algorithms 3.1 and 3.2, calling them
DLSA1 and DLSA2 in the tables. I will also observe effects
of varying the job sizes c and the number of cluster nodes p.
Again, NumPy is used for dense matrix operations. The base
case decomposition is realized by an adapted LAS2 routine from
SVDLIBC.

6 http://tedlab.mit.edu/~dr/SVDLIBC/, accessed in March 2010.

http://tedlab.mit.edu/~dr/SVDLIBC/
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hebb Streamed stochastic Hebbian algorithm from (Gorrell and Webb,
2005) which loops over the input dataset, in k ∗ epochs passes, to
converge at the singular triplets. The straightforward implementa-
tion suffered from serious convergency issues that I couldn’t easily
fix, so I only include it in the comparisons for the smallest dataset.
This algorithm internally updates the singular triplets with explicit
array loops (no BLAS).

With the exception of SVDLIBC, all the other algorithms operate in a
streaming fashion, so that the corpus need not reside in core memory
all at once. Also note that although memory footprint of the subspace
tracking algorithms ZMS and DLSA is independent of the size of the
corpus, it is still linear in the number of features, O(m). It is assumed
that the decomposition (Um×k,Sk×k) fits entirely into core memory.

3.4.2 Datasets

For the experiments, I will be using three datasets.

medium size corpus A corpus of 61,293 mathematical articles col-
lected from the digital libraries of NUMDAM, arXiv and DML-
CZ. Together these comprise about 270 million corpus positions,
with over 6 million unique word types (I parse out mathematical
equations and use them as separate word types). After the stan-
dard procedure of pruning out word types that are too infrequent
(hapax legomena, typos, OCR errors, etc.) or too frequent (stop
words), we are left with 315,002 distinct features. The final ma-
trix A315,002×61,293 has 33.8 million non-zero entries, with density
less than 0.18%. This corpus was chosen so that it fits into core
memory of a single computer and its decomposition can therefore
be computed directly. This will allow us to establish the “ground-
truth” decomposition and set an upper bound on achievable accu-
racy and speed.

small corpus A subset of 3,494 documents from the medium size
corpus. It contains 39,022 features and the sparse A39,022×3,494

matrix has 1,446,235 non-zero entries, so that it is about 23 times
smaller than the medium size corpus.

http://www.numdam.org/
http://arxiv.org/archive/math
http://dml.cz/
http://dml.cz/
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large corpus The last corpus is the English Wikipedia7. This corpus
contains 3.2 million documents covering almost 8 million distinct
word types in 2 billion tokens. I clip the vocabulary size to the
100,000 most frequent word types, after discarding all words that
appear in more than 10% of the documents (“stop-list”). This
leaves us with a sparse term-documents matrix with 0.5G non-zero
entries, or 14 times the size of the medium corpus.
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Figure 3.1.: Accuracy of singular values for various decomposition algo-
rithms on the small corpus (left) and medium corpus (right).

3.4.3 Accuracy

Figure 3.1 plots the relative accuracy of singular values found by DLSA,
ZMS, SVDLIBC and HEBB algorithms compared to known, “ground-
truth” values SG. I measure accuracy of the computed singular values S
as ri = |si − sGi|/sGi, for i = 1, . . . ,k. The ground-truth singular values
SG are computed directly with LAPACK’s DGESVD routine for the small
corpus and with SVDLIBC’s LAS2 routine for the medium corpus.

We observe that the largest singular values are practically always
exact, and accuracy quickly degrades towards the end of the returned

7 The latest static dump as downloaded from http://download.wikimedia.org/enwiki/
latest, June 2010.

http://download.wikimedia.org/enwiki/latest
http://download.wikimedia.org/enwiki/latest
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spectrum. This leads us to the following refinement: When requesting
x factors, compute the truncated updates for k > x, such as k = 2x,
and discard the extra x − k factors only when the final projection is
actually needed. This approach is marked as “DLSA2, c=100, k=400” in
Figure 3.1 (left) and then used as default in the larger experiments on
the medium corpus. The error is then below 5%, which is comparable to
the ZMS algorithm (while DLSA is at least an order of magnitude faster,
even without any parallelization).

Even with this refinement, the error is not negligible, so we are
naturally interested in how it translates into error of the whole LSA
application. This way of testing has the desirable effect that errors
in decomposition which do not manifest themselves in the subsequent
application do not affect the evaluation, while decomposition errors that
carry over to the application are still correctly detected.

To this end, I conducted another set of accuracy experiments. In
Latent Semantic Analysis, the most common application is measuring
cosine similarity between documents represented in the new, “latent
semantic” space. We will compute inter-document similarity of the
entire input corpus, forming an n × n matrix C, where each entry
ci,j = cossim(doci,docj) (see Section 2.3.2). We do the same thing for
the corpus represented by the ground truth decomposition, obtaining
another n × n matrix. Difference between these two n × n matrices
(measured by Root Mean Square Error, or RMSE) then gives us a
practical estimate of the error introduced by the given decomposition8.
Note that in addition to testing the magnitude of the singular values, this
also tests accuracy of the singular vectors at the same time. In Table 3.2,
we can observe that the error of DLSA2 is around 2%, which is usually
acceptable for assessment of document similarity and for document
ranking.

8 This is a round-about sort of test—to see how accurate a decomposition is, we use it
to solve a superordinate task (similarity of documents), then compare results of this
superordinate task against a known ground truth.
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Table 3.2.: Decomposition accuracy on the small corpus, measured by
RMSE of document similarities based on ground truth vs.
given algorithm.

Algorithm Job size RMSE
SVDLIBC 3,494 0.0
ZMS 10 0.0204

ZMS 200 0.0193

ZMS 1,000 0.0162

Algorithm Job size RMSE
DLSA2 10 0.0204

DLSA2 100 0.0199

DLSA2 1,000 0.0163

DLSA2 100, k = 400 0.0094

3.4.4 Performance

Performance was measured as wall-clock time on a cluster of four dual-
core 2GHz Intel Xeons, each with 4GB of RAM, which share the same
Ethernet segment and communicate via TCP/IP. The machines were not
dedicated but their load was reasonably low during the course of the
experiments. To make sure, I ran each experiment three times and report
the best achieved time. These machines did not have any optimized
BLAS library installed, so I also ran the same experiments on a “cluster”
of one node, a dual-core 2.53GHz MacBook Pro with 4GB RAM and
vecLib, a fast BLAS/LAPACK library provided by the vendor. This HW
setup is marked as “serial” in the result tables, to differentiate it from
the otherwise equivalent 1-node setup coming from the BLAS-less four-
node cluster.

Table 3.3 summarizes performance results for the small corpus.
For ZMS, the update time is proportional to number of updates ·
cost of update ≈ dnc e ·m(k + c)2, so that the minimum (fastest execu-
tion) is necessarily attained by setting job size c = k. Overall, we can
see that the direct in-core SVDLIBC decomposition is the fastest. The
HEBB implementation was forcefully terminated after one hour, with
some estimated eight hours left to complete. The speed of DLSA2 ap-
proaches the speed of SVDLIBC as the job size increases; in fact, once the
job size reaches the size of the whole corpus, it becomes equivalent to
SVDLIBC. However, unlike SVDLIBC, DLSA can proceed in document
chunks smaller than the whole corpus, so that corpora that do not fit in
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Table 3.3.: Performance of selected partial decomposition algorithms on
the small corpus, A39,022×3,494. Times are in seconds, on the
serial setup.

Algorithm Job size c Time taken [s]
HEBB N/A > 1h
SVDLIBC 3,494 16

ZMS 10 346

ZMS 100 165

ZMS 200 150

ZMS 500 166

ZMS 1,000 194

ZMS 2,000 out of memory

(a) Serial algorithms

Job size c DLSA2 DLSA1
10 190 2,406

100 122 350

1,000 38 66

3,494 21 21

(b) DLSA variants

RAM can be processed, and so that different document chunks can be
processed on different nodes in parallel.

Table 3.4.: Performance of selected partial decomposition algorithms on
the medium corpus, A315,002×61,293. Times are in minutes.

Algorithm Job size c Time taken
SVDLIBC 61,293 9.2
ZMS 200 360.1

(a) Serial algorithms, serial setup.

No. of nodes p
Job size c serial 1 2 4

1,000 55.5 283.9 176.2 114.4
4,000 21.8 94.5 49.6 38.2
16,000 15.5 29.5 32.0 23.0

(b) distributed DLSA2

For experiments on the medium corpus, I only included algorithms
that ran reasonably fast during the accuracy assessment on the small
corpus, that is, only ZMS, DLSA in its fastest variant DLSA2 and
SVDLIBC.

Performance of running the computation in distributed mode is sum-
marized in Table 3.4. As expected, performance scales nearly linearly,
the only overhead being sending and receiving jobs over the network
and the final merges at the very end of the distributed algorithm. This
overhead is only significant when dealing with a slow network and/or
with extremely few updates. The faster the connecting network and the
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greater the number of updates, dnc e � p, the more linear this algorithm
becomes.

Another interesting observation comes from comparing DLSA2 speed
in the “serial setup” (fast BLAS library) vs. “cluster setup” (no fast
BLAS) in Table 3.4 (right). The serial setup is about five times faster than
the corresponding cluster version with p = 1, so that even spreading the
computation over four BLAS-less nodes results in slower execution than
on the single “serial” node. As installing a fast, threaded BLAS library9

is certainly cheaper than buying five times as many computers to get
comparable performance, I strongly recommend doing the former (or
both).

English Wikipedia results

Since the Wikipedia corpus is too large to fit in RAM, I only ran the
streamed ZMS and DLSA2 algorithms, asking for 400 factors in each
case. On the “serial setup” described above, ZMS took 109 hours,
DLSA2 8.5 hours. I would like to stress that these figures are achieved
using a single commodity laptop, with a one-pass online algorithm
on a corpus of 3.2 million documents, without any subsampling. In
distributed mode with six nodes, the time of DLSA2 drops to 2 hours 23

minutes10—by far the fastest result reported in literature.

3.5 lsa over the english wikipedia

The ability to process arbitrarily large corpora with the streamed, dis-
tributed, single-pass LSA algorithm is exciting and its performance on
the English Wikipedia deserves a more thorough evaluation. The fol-
lowing experiments were reported in (Řehůřek, 2010) and extend the
work of (Řehůřek, 2011b) presented above. Their goal is to track the ef-
fect of distributed computing, oversampling and memory trade-offs on
the accuracy and performance of the large-scale eigen decomposition
algorithms described in Sections 3.2, 3.3 and 3.3.1. They are the one-
pass streamed distributed algorithm, a modified stochastic streamed

9 Options include vendor specific libraries (e.g. Intel’s MKL, Apple’s vecLib, Sun’s
Sunperf), ATLAS, GotoBLAS, . . .

10 For details and reproducibility instructions, see the gensim package documentation.

http://math-atlas.sourceforge.net/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://nlp.fi.muni.cz/projekty/gensim/dist_lsi.html
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two-pass algorithm and a hybrid of the two; the experiments refer to
them as P1, P2 and P12, respectively.

All three algorithms are streamed, meaning no random access to
observations is required and their memory requirements are constant
in the number of observations. The comparison will be done over a
100,000× 3,199,665 sparse matrix with 0.5 billion non-zero entries (0.15%
density). This matrix represents the entire English Wikipedia11, with the
vocabulary (number of features) clipped to the 100,000 most frequent
word types12. In all experiments, the number of requested factors is set
to k = 400. The experiments used three 2.0GHz Intel Xeon workstations
with 4GB of RAM, connected by Ethernet on a single network segment.
Compared to the experiments described above, all machines had an
optimized BLAS library, ATLAS, installed13.

3.5.1 Oversampling

This set of experiments examines the relative accuracy of the three algo-
rithms. P2 has two parameters which affect accuracy: the oversampling
factor l and the number of power iterations q. In the one-pass algo-
rithms P1 and P12, accuracy is improved by asking for extra factors l
during intermediate computations, to be truncated at the very end of
the decomposition.

Figure 3.2 summarizes both the relative accuracy and runtime perfor-
mance of the algorithms, for multiple choices of l and q. We see that
although all methods are very accurate for the greatest factors, without
oversampling the accuracy quickly degrades. This is especially true of
the P2 algorithm, where no amount of oversampling helps and power
iterations are definitely required.

Because the “ground-truth” decomposition is unknown, absolute er-
rors are not available. However, according to preliminary experiments
on a smaller corpus (not reported here), the stochastic algorithm with

11 Static dump as downloaded from http://download.wikimedia.org/enwiki/latest,
June 2010.

12 The corpus preprocessing setup is described in more detail online.
13 In fact, they were the same machines as in the previous distributed experiments, but

I followed my own recommendation and carefully upgraded and tuned their BLAS
stock.

http://math-atlas.sourceforge.net/
http://download.wikimedia.org/enwiki/latest
http://nlp.fi.muni.cz/projekty/gensim/wiki.html
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Table 3.5.: The first ten topics coming from the P2 decomposition with
three power iterations (q = 3) and 400 extra samples (l = 400).
The top ten topics are apparently dominated by meta-topics
of Wikipedia administration and by robots importing large
databases of countries, films, sports, music etc.

Topic i Singular The ten most salient words (both positively and nega-
tively) for topic i, with their weights

value si
1. 201.118 -0.474*“delete" + -0.383*“deletion" + -0.275*“debate" + -

0.223*“comments" + -0.220*“edits" + -0.213*“modify" + -
0.208*“appropriate" + -0.194*“subsequent" + -0.155*“wp" +
-0.117*“notability"

2. 143.479 0.340*“diff" + 0.325*“link" + 0.190*“image" + 0.179*“www"
+ 0.169*“user" + 0.157*“undo" + 0.154*“contribs" + -
0.145*“delete" + 0.116*“album" + -0.111*“deletion"

3. 136.235 0.421*“diff" + 0.386*“link" + 0.195*“undo" + 0.182*“user"
+ -0.176*“image" + 0.174*“www" + 0.170*“contribs" + -
0.111*“album" + 0.105*“added" + -0.101*“copyright"

4. 125.436 0.346*“image" + -0.246*“age" + -0.223*“median" + -
0.208*“population" + 0.208*“copyright" + -0.200*“income"
+ 0.190*“fair" + -0.171*“census" + -0.168*“km" + -
0.165*“households"

5. 117.243 0.317*“image" + -0.196*“players" + 0.190*“copyright" +
0.176*“median" + 0.174*“age" + 0.173*“fair" + 0.155*“in-
come" + 0.144*“population" + -0.134*“football" +
0.129*“households"

6. 100.451 -0.504*“players" + -0.319*“football" + -0.284*“league" + -
0.194*“footballers" + -0.141*“image" + -0.132*“season" + -
0.117*“cup" + -0.113*“club" + -0.110*“baseball" + -0.103*“f"

7. 92.376 0.411*“album" + 0.275*“albums" + 0.217*“band" +
0.215*“song" + 0.184*“chart" + 0.164*“songs" + 0.160*“sin-
gles" + 0.149*“vocals" + 0.139*“guitar" + 0.129*“track"

8. 84.024 0.246*“wikipedia" + 0.183*“keep" + -0.179*“delete" +
0.167*“articles" + 0.153*“your" + 0.150*“my" + -0.141*“film"
+ 0.129*“we" + 0.123*“think" + 0.121*“user"

9. 79.548 the word “category” in ten different languages (and their exotic
un-TEX-able scripts)

10. 79.074 -0.587*“film" + -0.459*“films" + 0.129*“album" +
0.127*“station" + -0.121*“television" + -0.119*“poster"
+ -0.112*“directed" + -0.109*“actors" + 0.095*“railway" +
-0.085*“movie"
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extra power iterations and oversampling gives the most accurate results;
I will therefore plot it in all subsequent figures as a frame of reference,
under “P2, l = 400, q = 3”. Note that all algorithms consistently err
on the side of underestimating the magnitude of the singular values—as
a rule of thumb, the greater the singular values in each plot, the more
accurate the result.

3.5.2 Chunk Size

The one-pass algorithms P1 and P12 proceed in document chunks that
fit into core memory. A natural question is, what effect does the size of
these chunks have on performance and accuracy? With smaller chunks,
the algorithm requires less memory; with larger chunks, it performs
fewer merges, so we might expect better performance. This intuition
is quantified in Figure 3.3 (left), which lists accuracy and performance
results for chunk sizes of 10,000, 20,000 and 40,000 documents.

We see that chunk sizes in this range have little impact on accuracy,
and that performance gradually improves with increasing chunk size.
This speed-up is inversely proportional to the efficiency of the decompo-
sition merge algorithm: with a hypothetical zero-cost merge algorithm,
there would be no improvement at all, and runtime would be strictly
dominated by costs of the in-core decompositions. On the other hand,
a very costly merge routine would imply a linear relationship, doubling
the runtime every time the number of input chunks doubles.

3.5.3 Input Stream Order

In the Wikipedia input stream, observations are presented in lexico-
graphic order—an observation vector corresponding to the Wikipedia
entry on anarchy arrives before the entry on bible, which comes before
censorship etc. This order is of course far from random, so we are nat-
urally interested in how it affects the resulting decomposition of the
single-pass algorithms (the two-pass algorithm is order-agnostic by con-
struction).

To test this, I randomly shuffled the input stream and re-ran the
experiments on P1. Ideally, the results should be identical, no matter
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how we permute the input stream. Results in Figure 3.3 (right) reveal
that this is not the case: singular values coming from the shuffled
runs are distinct from the ones coming from the original, alphabetically
ordered sequence. This shows that the one-pass truncated scheme has
some difficulties adjusting to gradual subspace drift. With the shuffled
input, no significant drift can occur thanks to the completely random
observation order, and a much higher accuracy is retained even without
oversampling.

3.5.4 Distributed Computing

The two single pass algorithms, P1 and P12, lend themselves to easy
parallelization. In Figure 3.4, I evaluate them on a cluster of 1, 2 and
4 computing nodes. The scaling behaviour is linear in the number of
machines, as there is virtually no communication going on except for
dispatching the input data and collecting the results. As with chunk
size, the choice of cluster size does not significantly affect accuracy.

The P2 algorithm can be distributed too, but is already dominated by
the cost of accessing data in its q+ 2 passes. Routing the data around
the network gives no performance boost, so I omit the results from
the figure. Nevertheless, distributing P2 would still make sense under
the condition that the data be already predistributed to the computing
nodes, perhaps by means of a distributed filesystem.
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Figure 3.2.: Experiment 3.5.1: effects of the oversampling parameter l
on accuracy of the P1, P2 and P12 algorithms (left) and
oversampling and power iterations on the P2 algorithm
(right). Wall-clock times are in brackets. Experiments were
run on a single machine, with chunks of 20,000 documents.
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Figure 3.3.: Left: Accuracy and wall-clock times for different chunk sizes
in P1 and P12 (Experiment 3.5.2), no oversampling.
Right: Effects of input order on the P1 algorithm (Experi-
ment 3.5.3). Chunk size is set to 40,000 documents, no over-
sampling.
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Figure 3.4.: Distributed computing for algorithms P1, P12 (Experi-
ment 3.5.4). The chunk size is set to 20,000 documents, no
oversampling.

In this chapter I compared several LSA inference methods that scale
gracefully either due to their a) incremental nature (SVD can be updated
with new observation without the need to recompute everything from
scratch) or b) distributed nature, which allows them to utilize a cluster
of computers to achieve fast decomposition in distributed memory.

I developed and presented a novel distributed single-pass eigen de-
composition method, which runs in constant memory w.r.t. the number
of observations. This method is suited for processing extremely large
(possibly infinite) sparse matrices that arrive as a stream of observations,
where each observation must be immediately processed and then dis-
carded. The method is embarrassingly parallel, so I also implemented
and evaluated its distributed version.

I also presented a novel streamed version of a two-pass stochastic
eigen decomposition algorithm, and compared it to the single-pass
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algorithm. The comparison was done in the context of Latent Semantic
Analysis, on a corpus of 3.2 million documents comprising the English
Wikipedia.

On a single 2GHz machine, the top achieved decomposition times
were 4 hours and 42 minutes for the one-pass algorithm and 3 hours
6 minutes for the stochastic multi-pass algorithm. Without power
iterations and with reduced amount of oversampling, I recorded even
lower times, but at the cost of a serious loss of accuracy. On a cluster of
four computing nodes on three physical machines, the distributed single
pass decomposition was completed in 1 hour and 41 minutes.

We observed that the lightning-fast stochastic algorithm suffers from
serious accuracy issues, which can be remedied by increasing the num-
ber of passes over the input (power iterations), as suggested in (Halko
et al., 2009). But, as the number of passes is the most precious resource
in streaming environments, the otherwise slower one-pass algorithms
become quickly competitive. The one-pass algorithms, one the other
hand, suffer from dependency on the order of observations in the input
stream; I will return to this behaviour in future work.

A practical and equally exciting contribution is a modern implementa-
tion of these algorithms, that I release into open-source as gensim. Writ-
ten in Python, it still manages to get top performance thanks to the use
of Python’s NumPy library with fast BLAS calls under the hood.

http://nlp.fi.muni.cz/projekty/gensim/


4
L AT E N T D I R I C H L E T A L L O C AT I O N

In the previous chapter, I presented research into scalability of Latent
Semantic Analysis, a robust method of unsupervised document analysis
based on linear algebra. This chapter presents a scalable version of
Latent Dirichlet Allocation (LDA), a method based on Bayesian inference.
As with LSA, performance of the resulting distributed LDA algorithm
will be measured against the English Wikipedia, a large, topically
heterogeneous corpus.

4.1 motivation

In the introduction Chapter 2.5.5, I described the history and theoretical
background of Latent Dirichlet Allocation. As a reminder, LDA is a hi-
erarchical Bayesian model that represents each document as mixture of
several topics, where the topics are in turn distributions over words.
Each topic assigns high probability to a different set of semantically
coherent words. As is the case with all models based on the statisti-
cal semantics hypothesis, what is “semantically coherent” depends on
word co-occurence patterns within a given corpus of documents. This
view of semantic relatedness is useful in word clustering as well as doc-
ument similarity assessment (we expect documents with similar topic
distributions to be semantically related, too), but has little connection to
the traditional notion of semantics in linguistics or psychology (see the
discussion in Chapter 1).

The associated inference algorithms of estimating an LDA model
from a given training corpus are costly, and much research has been

67
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directed at improving their efficiency. There are three major branches of
optimization:

• Approximative algorithms, which make the classic trade-off be-
tween model accuracy and performance.

• Distributed algorithms, which attack the problem by using more
hardware (computer clusters).

• Online algorithms, which reduce complexity by processing the
input incrementally, in smaller batches of documents.

The novel Latent Semantic Analysis algorithm of the previous chapter
combined results in all three of these areas. The LDA algorithm de-
scribed here uses an existing approximative algorithm (the mean-field
variational algorithm of Blei et al. (2003)). I extend it to work over a clus-
ter of autonomous computers, and over infinite input streams (updating
an existing model with new documents). As for the third branch, online
processing, my own work on an incremental updating LDA scheme has
been obsoleted by Hoffman et al. (2010), who published a principled
approach to online LDA training based on gradient ascent. The final
algorithm described below will incorporate all three optimization areas.

4.2 prior art

While Latent Semantic Analysis has been successfully applied to col-
lections of millions of documents (see Vigna (2008) and my own work
in the previous chapter), experiments on LDA are usually done over
corpora two orders of magnitude smaller. Among the exceptions are
(Yao et al., 2009), who, by clever use of sparsity of the topic-word dis-
tributions, achieve a constant-factor speed up in their Gibbs sampler1.
Another approach presented in Song et al. (2005) realizes online train-
ing through incremental collapsed Gibbs sampling, but in the process
loses the guarantee of convergence.

Use of distributed algorithms was explored in Newman et al. (2007),
where the authors devised two parallelized approximative algorithms.

1 The authors also released their code through the software tool Mallet.

http://mallet.cs.umass.edu/
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However, their algorithm is based on Gibbs sampling and its memory
requirements scale linearly with the number of input documents (in
fact, with the number of input words), which is infeasible for web-
scale corpora. The cluster distribution there serves merely to speed
up the computation, not overcome problems with memory scalability.
Wang et al. (2009) implemented their algorithms to work over MPI and
Google’s MapReduce framework.

4.3 variational em

The core inference algorithm is based on Variational Expectation-
Maximization (sometimes also called Variational Bayes, VB) algorithm
(Attias, 2000; Blei et al., 2003). This algorithm replaces the true
posterior P(θ, z,β|w,α,η) with a more simple, tractable distribution
Q(θ, z,β|γ,φ,λ). γ,φ,λ are free parameters, so thatQ is in fact a family
of distributions. We choose the form of Q so that dependencies between
θ and β disappear, with Q factorizing to

Q(zi,j = k) = φj,wi,j,k

Q(θd) = Dirichlet(γd)

Q(βk) = Dirichlet(λk),

that is, φ, γ and λ are parameters for the posterior distributions over
z, θ and β, respectively.

It can be shown through use of Jensen’s inequality2 that minimizing
the lower bound

L(φ,γ,λ,w) , Eq[logP(w, z,θ,β|α,η)] − Eq[logQ(z,θ,β)] (4.1)

with respect to the free parameters φ,γ,λ results in minimizing the
Kullback-Leibler divergence between P and Q, and, therefore, in Q

becoming as close approximation of P as our choice of the family of
Q permits.

This basic intuition leads to an Expectation-Maximization (EM) algo-
rithm for training an LDA model:

2 The derivation is rather involved; see the original article of Blei et al. (2003) for details.
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e-step : Optimize φ,γ while holding λ (the parameters for topics)
fixed.

m-step : Optimize λ using the newly computed φ,γ.

The optimization is done by coordinate ascent over the parameter
space of φ,γ,λ:

φd,w,k ∝ exp(Eq[logθd,k] + Eq[logβk,w])

γd,k = α+

m∑
i=1

Ai,dφd,i,k

λk,i = η+

n∑
d=1

Ai,dφd,i,k,

where Eq[logθd,k] = ψ(γd,k) −ψ(
∑k
t=1 γd,t), Eq[logβk,w] = ψ(λk,w) −

ψ(
∑m
i=1 λk,i) and ψ is the digamma function.

4.3.1 Streamed VEM

The algorithm as formulated above is not suitable for large training
corpora. The reason is that storage for the parameters γn×k and
φn×m×k scales linearly with the input size n, which is not acceptable.
Luckily, unlike Gibbs sampling, we can avoid storing these parameters
explicitly in memory. The key observation here is that there is no
coupling between parameters corresponding to different documents.
Each update in the E step can be performed independently of the others;
the documents are independent conditional on topics.

Algorithm 4.1 realizes this document-by-document training in con-
stant memory (independent of n). In anticipation of distributing the
E-step over several cluster nodes, we compute the E-step over a chunk
of documents C (instead of the full matrix A), and only collect sufficient
statistics χ instead of updating λ at the end of the algorithm. The reason
is, λ will be updated based on χ aggregated from all chunks, in a higher
level routine.
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Algorithm 4.1: LDA Inference (E step on a single document chunk)
Input: A chunk Cm×c = {d1,d2, . . . ,dc} of c documents; c is chosen

such that the whole chunk fits in main memory. αk×1 are the
topic priors. βk×m are the current word-topic probabilities.

Output: Document-topic proportions θk×c. Sufficient statistics χk×m
for the M step.

χk×m ← 01

foreach document dm×1i in C do2

θk×1i ∼ Dirichlet(Gamma(1, 0.1)) ; // initialize θ randomly3

repeat4

φm×k ← exp(Eq[logθi] + Eq[logβ])5

γi ← α+φTdi6

θi ← Dirichlet(γi)7

until θi has converged8

χ← χ+ θid
T
i9

end10

4.3.2 Distributed VEM

The EM algorithm is straightforward to distribute; after aggregating the
sufficient statistics χ from all document chunks in the E step, we set
λ = η +

∑
χ in the M step. In vanilla batch VB, this EM coordinate

ascent is repeated until convergence (for example, until log-likelihood
on a held-out corpus stops improving). However, this batch algorithm
is not satisfactory for large corpora for multiple reasons:

1. The M step only happens once per full corpus iteration, after
having processed all chunks. While this ensures convergence, we
could potentially converge much faster with finer updates.

2. There is no way to update the model with new documents if we
wish to run LDA as a daemon service. We can re-train the model
on the whole dataset from scratch, but that is extremely inefficient
(cf. the “batch” Lanczos methods for LSA from Chapter 3).
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3. This approach breaks down completely for infinite training
streams. Here we cannot afford multiple iterations over the train-
ing corpus even in principle.

4. Additionally, combining the previous two points, it is desirable to
have a way to discount old observations in favour of new ones, so
that the model can adjust to new data trends in a non-stationary
training input stream3.

Algorithm 4.2: LDA model blending
Input: Sufficient statistics matrices χ1 and χ2, created from chunks

of n1 and n2 documents respectively. Blending factor ρ.
Output: χ which blends χ1 and χ2 proportionally to ρ.

χ1 ←
n1+n2
n1

χ11

χ2 ←
n1+n2
n2

χ22

χ← (1− ρ)χ1 + ρχ23

Recently, Hoffman et al. (2010) addressed the first two points by
introducing an online LDA inference algorithm, based on subsampling.
While still limited to training over corpora of finite, predefined size (the
final corpus size is an explicit parameter), their algorithm is elegant, is
easy to extend and comes with convergence guarantees. The core idea is
introducing a function that takes two existing models (for example, the
current model and a model coming from a new chunk of documents)
and blends them into a single resulting model. In this way, each online
update can be seen as being blended into the existing model.

The novel algorithm presented below builds on this work, and extends
it to cover the last two points as well: new observations may be added in-
definitely (infinite training stream) and new observations may be given
more (or less) weight during the training, to enable dynamic modelling
of non-stationary input. Algorithm 4.2 describes one possibility of such
modified model blending. The final model is a linear combination of
expected counts χ of the two input models stretched to equal size.

3 In the same fashion we introduced a decay factor γ for LSA subspace tracking in
Chapter 3.
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The final distributed algorithm is summed up in Algorithm 4.3. The
outer-most loop acts as a daemon: it accepts new training corpus of
documents and updates the underlying model. The update is done in
the inner loop, by the online algorithm discussed above: new documents
are split into chunks of manageable size that fit in main memory and
distributed among the available processors.

Following the analysis from Hoffman et al. (2010), convergence is
ensured by letting the impact of later updates gradually diminish by
setting the blending factor ρt = (1+ t)−0.5. Where convergence is not
desired (such as for non-stationary streams), a fixed number of updates
in the inner loop can be run instead, blending the models in proportion
to the number of documents they were created from.

This algorithm introduces another parameter κ, the purpose of which
is to explicitly control the frequency of model updates. The model is
updated (a complete EM step if performed) once per κ ·P chunks, where
P is the number of computing nodes in the cluster. With κ = 1,P = 1,
the algorithm behaves exactly like the online stochastic algorithm of
Hoffman et al. (2010). Setting κ = 1,P > 1 corresponds to a “distributed”
version of their algorithm: the update happens after every processor has
processed exactly one input chunk of documents. This is a very natural
extension: in the same amount of time, we process P chunks in parallel
on P processors. Increasing κ > 1 results in fewer updates; more chunks
in the E step before performing an M step. On the other extreme, with
κ > dnP e, the algorithm falls back to batch mode, performing a complete
corpus pass for a single EM update. Therefore, through the κ parameter,
the granularity of updates can be naturally adjusted on a scale that
includes one update per chunk on one end, and one update per entire
corpus on the other. The M step is a natural synchronization point,
where each processor sends out its accumulated state χ and receives
a new matrix of topics β. Setting κ therefore amounts to balancing
between communication costs (higher κ means fewer synchronizations)
and faster convergence (lower κ).

Algorithm 4.3 requires storing km floats on lines 2 and 3. On
line 8, we observe that the aggregation of χ can be done cummulatively,
as each partial χi arrives, without storing all individual statistics in
memory, so this line requires only additional km floats. On line 7, each
chunk C is be realized in memory before being sent out to individual
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Algorithm 4.3: Distributed Online LDA
Input: Stream (possibly infinite) of update matrices Ai. Each update

is represented as a stream of ci document chunks
A =

[
C1, C2, . . . , Cci

]
(the number ci is chosen so that each

chunk fits into main memory). Number of requested topics k.
Asymmetric document-topic priors αt×1, symmetric
word-topic priors η. Cluster of P computing nodes. Online
parameter κ.

Output: Word-topic probabilities βt×m, which constitute a
variational LDA model.

This algorithm is streamed and avoids materializing any O(n) or
O(m2) matrices in memory, so that it can process arbitrarily large
input.

χk×m ∼ Gamma(1, 0.1) ; // initialize the model randomly1

βk×m ∼ Dirichlet(χ);2

foreach update A do3

t← 0;4

repeat5

Distribute current topics β to all P processors;6

// E step: process κ · P document chunks of A in
parallel on P cluster nodes, Algorithm 4.1

Compute χi of each chunk CtκP mod c, . . . , C(tκP+κP−1) mod c;7

χ←
∑P·κ
i=1 χi ; // aggregate sufficient statistics8

// M step: update model using the collected
sufficient statistics

Blend χ with χ using ρ = (1+ t)−0.5 ; // Algorithm 4.29

β ∼ Dirichlet(η+ χ);10

t← t+ 1;11

until β stable (model has converged) ;12

end13

processors. The size of C is completely configurable; in memory-
constrained environments, a “chunk” may even be a single document.
The overall space complexity is therefore O(km) floats, which is optimal,
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as that is the size of the model βk×m itself. We do not store θk×n

(document-topic mixtures) during training, as the size of θ is O(n).
If required, θ of the training corpus can be reconstructed through the
inference procedure in Alg. 4.1 with an extra pass over the corpus4.

Time complexity is dominated by the E step, Algorithm 4.1. For
each document nj, the inner loop performs O((|nj| + 1)k) operations
until convergence. (Blei et al., 2003) report that it took them about |nj|

iterations to converge, so that the whole procedure requires O(|nj|
2k)

operations per document. In the online updating scheme (κ � n
P ),

we can afford to set a hard upper limit on the number of variational
iterations per document, because the impact of each document on the
model is much more immediate5. Algorithm 4.1 then therefore runs
in O(|nj|k) per training document, or O(nnz · k) for the entire training
corpus, nnz being the number of non-zeroes in the sparse input bag-of-
words matrix Am×n.

4.4 wikipedia experiments

Equipped with an online, streamed, distributed algorithm for LDA
model estimation, we can proceed to build models from large, web-scale
corpora. As with LSA, our corpus of choice will be the entire English
Wikipedia6, a collection of 3.2 million documents. Its bow-of-words
represenation is a 100,000 × 3,199,665 sparse matrix with 0.5 billion non-
zero entries (0.15% density). The matrix is implicit; its columns (the
documents) are accessed sequentially one after another, and therefore
the matrix never needs to be fully realized in memory. The vocabulary
was clipped to the 100,000 most frequent word types, after discarding
word types that appear in more than 10% documents (stop-list). In all
experiments, the number of requested topics is set to k = 100. The
hyperparameters α and η were both set to 1

k = 0.01.

4 This is a complete analogy to the way we only store the left singular vectors U in LSA,
ignoring the O(n) matrix V of right singular values; see remark 2 on page 40.

5 In practise and in the Wikipedia experiments below, I limited the number of per-
document iterations to fifty.

6 Static dump as downloaded from http://download.wikimedia.org/enwiki/latest,
June 2010.

http://download.wikimedia.org/enwiki/latest
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Table 4.1.: LDA topic assignments in a sample document. Word colours
correspond to values of the hidden topic-indicator variable
z—five different topics appear in the text. No colour means
the word was removed during pre-processing and therefore
did not affect the computation. This excerpt comes from the
Wikipedia article on “Military Medical Business” (retrieved
February 2011), topics are automatically inferred using the
100-topic model of the whole English Wikipedia described in
the text.

Military Medical Business was one of the professional medical journals of the Worker ’s and

Peasant ’s Red Army (RKKA). The journal was published monthly in Moscow . Between 1938–

1940, each issue cost 1 ruble and 50 kopecks. A 12 month subscription to the journal for the year

1939 cost 18 rubles . The Moscow publishing house published total of 33 different professional

medical journals for the RKKA in the year 1939. The Leningrad publishing house published 5

different journals that same year. Four different serials were also published by the Moscow

publishing house under the title Central Medical Abstract Journal .[1] By the end of 1940, the

price of single issue of Military Medical Business had increased to 2 rubles . The Moscow

publishing house advertised 33 different journals , the Leningrad publishing house advertised

5 journals , and the Kazan publishing house advertised 1 journal for the year 1941. A 12 month

subscription to Military Medical Business cost 30 rubles in 1941. The Moscow publishing house

also advertised four serials under the title Central Medical Abstract journal for the year 1941.[2]

The first experiment was run with κ = 1, i.e., updating the model once
every P document chunks. When run with P = 1 (a single Core2Duo
laptop, 2.53GHz, 4GB RAM), Algorithm 4.3 took 11 hours to estimate
this Wikipedia model. With P = 4 (four 2.0GHz Intel Xeon workstations
with 4GB of RAM, connected by Ethernet on a single network segment),
time taken dropped to 3h20m. A few of the resulting topics are listed
in Table 4.2. Unlike Latent Semantic Analysis, these topics are not
cumulative and therefore easier to interpret (cf. Table 3.5 on page 61).
As was the case with LSA, some of these LDA topics correspond to
Wikipedia management concepts and templates.
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Table 4.2.: Ten most probable words for sixteen randomly selected top-
ics coming from a 100-topic LDA model of the English
Wikipedia.

disease king film user air light radio image
medical ii films edit aircraft star station jpg

treatment prince directed block airport sun fm file
cells emperor movie wikipedia force moon news uploaded
cell son cast here squadron earth channel png

health duke director blocked flight stars am media
cancer iii man edits wing planet stations contribs
blood empire story my aviation camera tv notify

patients kingdom plot revert flying sky broadcasting logs
acid royal love me airlines solar pm picture

bar olympic president business h class canada building
text olympics washington companies g assessed canadian built
till women served million o rev ontario historic

shift men virginia bank j quality toronto buildings
color summer pennsylvania market r importance quebec tower

fontsize championships massachusetts management f rating columbia hall
xs gold ohio financial l unknown british architecture
id medal governor services k reassessed alberta construction
y games republican industry p stub montreal street

value event law development w start vancouver park

4.5 discussion

A scalable, distributed algorithm for Latent Dirichlet Allocation infer-
ence has been lacking. Large-scale LDA efforts, when done at all, are
hand-tuned, monumental, and cite-worthy on that merit alone7. At the
same time, the general NLP public is becoming increasingly interested
in modern trends in topic modelling, and unsupervised text exploration
and analysis have a potential on impact communities well outside the
academic core. One example are digital libraries, where organizing and
cataloguing the (often retro-digitzed and metadata-free) texts by hand is
tedious and costly. In Chapter 6, I will describe one such application of
LDA on an existing digital library.

The algorithm presented in this chapter combines several desirable
properties:

1. it is distributed (scales linearly with more machines),

7 http://christo.cs.umass.edu/wiki40/

http://christo.cs.umass.edu/wiki40/
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2. it is streamed (runs in contant memory and does not require
random access to the training dataset) and

3. is incremental (can update an existing model with new training
data, so that it can process infinite input streams).

To the best of my knowledge, mine is the first algorithm with these
properties combined. The algorithm does not introduce any further ap-
proximations or heuristics, beyond the variational mean-field approxi-
mation in document inference.

As with LSA, I release the distributed implementation into open-
source as part of gensim, a Python framework for vector space modelling.
As a side effect of this release, the results presented in the experiment
section are easily reproduced8, as they only rely on a publicly available
dataset (the English Wikipedia) and the gensim code.

8 http://nlp.fi.muni.cz/projekty/gensim/wiki.html

http://nlp.fi.muni.cz/projekty/gensim/
http://nlp.fi.muni.cz/projekty/gensim/wiki.html
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Ever tried. Ever failed.
No matter. Try again.
Fail again. Fail better.

(Samuel Beckett, Worstward Ho)

Even though this thesis concerns itself with “text semantics” of a
limited type (see the introduction in Chapter 1), there is a wealth of
applications that call for exactly this sort of simplistic, utility-driven
statistical approach.

As an example, Chapter 7 will describe an algorithm for language
identification. The language identification task has been traditionally
formulated as “Given a chunk of text, which language was it written
in?”. The field was considered “solved” by the mid-90s, and only with
the rise of the Internet did new challenges appear. What about docu-
ments written in multiple languages? Can the methods tell the input
document was “written” in no natural language at all (the messiness of
the Web data can only be appreciated by those who have had to deal
with it)? How robust are the methods on very short text segments? Can
they tell the boundary points where the text changes from one language
to another in a document? Are they fast enough?

This “problem redefinition” is typical of modern applications—rather
than invalidating old solutions, the problem formulation shifts in new,
equally exciting directions. Following the silver thread running through-
out this thesis, particular emphasis will be placed on efficiency and scal-
ability of the proposed methods.

I place these applied algorithms here, after the part on general-
purpose semantic analysis techniques of LSA and LDA, even though
these applications at the same time motivate the general algorithms
and build on top of them. The work on LSA and LDA scalability
was fuelled by the practical need of topical browsing in an existing
digital library (Chapter 6); the language segmentation algorithm in
Chapter 7 was developed for Seznam.cz, a search engine company; the
topical segmentation of Chapter 5 is a result of having to deal with
heterogeneous text collections in a prototype of a plagiarism detection
system (Řehůřek, 2008b).

Of course, the list of applications considered in the subsequent chap-
ters is by no means exhaustive. Other uses of the unsupervised Vector
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Space Model include, and are not limited to, essay grading (Landauer
et al., 1998), authorship attribution (Juola, 2006; Abbasi and Chen, 2006),
thesaurus generation (Grefenstette, 1994; Curran and Moens, 2002) or
word sense disambiguation (Leacock and Chodorow, 1998; Pantel and
Lin, 2002; Yuret and Yatbaz, 2010).



5
T O P I C S E G M E N TAT I O N

Topic segmentation algorithms aim to split an unstructured text docu-
ment into contiguous blocks, called segments, each of which covers a
single compact topic, while consecutive blocks cover different topics.
Applications include finding topic boundaries in text transcriptions of
audio news (Reynar, 1998), Information Retrieval (Hearst and Plaunt,
1993), anaphora resolution (Kozima, 1993), improving text navigation
for visually impaired (Choi, 2002) or intrinsic plagiarism (anomaly) de-
tection (Řehůřek, 2008a). It can also be used to improve Information
Retrieval performance, which is main target application for the method
described in this Chapter.

The content of this chapter is based on the work presented at the 13th
Portuguese Conference on Artificial Intelligence (EPIA), (Řehůřek, 2007b).
I start by observing which features are desirable in text segmentation
algorithms for the Information Retrieval domain, with emphasis on
improving high similarity search of heterogeneous texts. I proceed to
describe a robust, purely statistical method based on context overlap
that aims to fulfil these desired features. Experimental results are
presented, along with a comparison to other existing algorithms.

5.1 motivation

To see how topic segmentation might improve IR performance, consider
a standard IR scenario. Here documents are transformed via the Vector
Space Model and indexing techniques are employed to allow efficient ex-
act and proximity queries. Given the widely heterogeneous documents
that a general IR system may expect, some of these documents may be

83
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monothematic and compact, dealing with a single topic. Others can be
a mixture of various topics, connected not thematically but rather in-
cidentally (for example, documents containing news agglomerated by
date, not topic). Some may cover multiple topics intentionally, such
as complex documents involving passages in different languages. The
problem here is that once the documents are converted into the Vector
Space Model, all structural information is lost. The resulting document
vector shifts away from any one topic included in the original document.
Still, user queries are typically monothematic and in this way the chance
of high similarity match between user query and document vector de-
creases. This can result in missed hit. Thus having basic retrieval blocks
correspond to single topics rather than whole documents seems like a
methodologically sound step. It is up to final application to merge and
present topical, sub-document hits to the user. It also depends on appli-
cation to set granularity of topics that we wish to tell apart. Identifying
compact document chunks also has applications in intrinsic plagiarism
detection, where it helps to reduce the number of suspicious passages
and subsequent expensive, more detailed queries.

There are practical considerations that are important in real-world
IR systems. Driven by the need to understand a system’s behaviour
(especially unexpected behaviour) and the ability to make extensions to
the system during the development cycle, it is advantageous to keep the
system architecture as simple, clear and robust as possible. Based on
these concerns, three important properties of text segmentation for IR
systems may be identified:

1. Domain independence. As little external knowledge as possible
is required for segmentation of a document. For large collections,
even semi-automatic techniques (i.e., techniques that require some
kind of human intervention during the segmentation process) are
problematic.

2. Language independence. Although techniques for automatic lan-
guage detection exist (see Chapter 7), using separate topic segmen-
tation algorithms for different types of input data is cumbersome
and difficult to maintain. An algorithm should ideally work based
solely on document content, without any extra meta-data. Addi-
tionally, it should be able to deal with the case where the input
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text is not a strictly well-behaved part of a language (which is rare
in real-world documents). An example is robustness towards com-
monly appearing inserted content such as small ASCII drawings,
inserted passages in different languages, short tables, poorly OCR-
ed documents and so on.

3. Granularity. Desirable is an option that allows one to set a cus-
tomizable level of granularity as to what constitutes a “sufficient”
topic shift. This allows the system maintainer to set the segmenta-
tion policy, based on expected query granularity. There is no point
clogging the system with many small segments that are conceptu-
ally identical with respect to user interests, just as it’s not desirable
to keep widely varying topics in one single document.

In addition to this list, technical aspects such as effectiveness are
also important. Segmentation must perform well enough to allow text
segmentation of large documents in reasonable time. This limits the
choices to algorithms that utilize readily identifiable surface cues, such
as those based on text cohesion and lexical repetition.

5.2 related work

Different text segments should more or less correspond to different
topics. Paragraph breaks could be suggestive of a topic shift. However,
simply splitting at new line breaks is problematic. In many documents
the new line breaks are not indicative of paragraphs, but rather of the
place where the text meets the right margin of the page. This may be
caused by OCR, certain text editors or retransmission through e-mail
clients. More sophisticated segmentation algorithms which take into
account the document content are required.

An early linear segmentation algorithm called TextTiling is due to
Hearst (Hearst, 1994). The basic idea is to take note of lexical repetition.
A window of fixed length is being gradually slid through the text,
and information about word overlap between the left and right part
of the window is converted into a digital signal. Shape of the post-
processed signal is used to determine segment breaks. Complexity of
this method is linear in the length of the document and requires virtually
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no linguistic knowledge or tuning beyond the choice of parameters for
window size, step for the window slide and a segmentation threshold1.
These features make TextTiling a good candidate for IR purposes.

A more recent approach is that of Choi (Choi, 2000). His C99 algo-
rithm computes a sentence-to-sentence similarity matrix (again using
lexical cohesion), and applies a relative ranking to get rid of unreliable
absolute values. Divisive clustering on the rank matrix is applied to
obtain the final segmentation. Choi’s results show that C99 is vastly
superior to the previous methods of Hearst, various modifications of
Reynar’s maximization algorithm (Reynar, 1998) and the Segmenter al-
gorithm (Kan et al., 1998).

5.3 lsitiling

The algorithm proposed here, called LSITiling, is based on and extends
Hearst’s TextTiling algorithm. It uses the same sliding window to obtain
a context similarity signal, then analyses this signal to arrive at a final
segmentation. The difference lies in what constitutes a context. Where
TextTiling relies on text surface features of character token units to de-
termine context overlap, LSITiling uses context overlap in a conceptual
space. The reasoning behind this enhancement is following: segmenta-
tion aims at discerning individual topics. These may be vaguely defined
as chunks of text pertaining to a single idea. People, however, com-
monly use different words to express the same idea. Indeed, it is a
recommended stylistic guideline to vary the vocabulary and avoid lexi-
cal repetition. TextTiling (as well as other algorithms) go a step in the
direction of lexical independence by stemming the text—that is, unify-
ing tokens that share a common word stem. Apart from failing point
two of our three point wish-list (language independence), this does not
address basic common language phenomena like synonymy.

LSITiling computes the context similarities in topic space. Topic space
is a space where each dimension represents a concept present in original
data. From a broader perspective, LSITiling belongs to the class of Vec-
tor Space Model methods. Construction of the concept space (also called
embedded or latent space) is done by applying the IR technique of Latent

1 See (Hearst, 1994) for exhaustive algorithm details.
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Semantic Analysis (or sometimes Indexing) (LSA, LSI), which was concep-
tually introduced in Section 2.5.1 and extended in Chapter refchap:lsa.
LSI was chosen for its established role in IR, but other decomposition
schemes discussed in Chapter 2 are also applicable. As a reminder, LSA
is a straightforward statistical method which projects data onto a lower
dimensional space, with the projection optimal in the least squares sense.
Translated into the Natural Language Processing domain, it uses word
co-occurrence of both first and higher orders to derive co-occurrence pat-
terns, called concepts, which define the dimensions in the new concept
space.

In the proposed algorithm, LSI is applied to the domain of text seg-
mentation as follows: let the input be a single text document we wish to
segment. Next we construct a corpus of pseudo-documents. This is a criti-
cal step—although previous work (Choi et al., 2001; Foltz, 1996; Bestgen,
2006) also sought to apply LSI to text segmentation, they split the input
document into individual sentences and/or paragraphs and used those
as a collection of pseudo-documents. Additionally, Foltz added other
domain-specific documents, such as encyclopaedia entries and book ex-
cerpts to this collection, to increase quality of the latent model. Here
the approach differs in that I consider overlapping pieces (or chunks) of
the input document. In practice, I choose as pseudo-documents exactly
those chunks considered by the TextTiling algorithm as contexts. All
terms are identified (no stemming is performed) and Term Frequency *
Inverse Document Frequency, or TF-IDF, matrix is constructed (see Sec-
tion 2.2). The result is a large, sparse matrix—a perfect candidate for
the efficient SVD algorithms discussed in Chapter 3. A number of latent
dimensions is chosen and each pseudo-document is projected into the
new, reduced latent space.

Dimensionality of the latent space determines how much data vari-
ance is retained. Using only the single, most dominant concept would
result in each pseudo-document being represented by a single number.
Keeping more dimensions keeps more information about the pseudo-
document’s content, allowing more refined representation in terms of
adherence to multiple concepts. As the other extreme, keeping all di-
mensions means all information present in the data is kept (the TF-IDF
matrix can be reconstructed without any loss). However, it is desirable
to keep the number of latent dimensions low. This is to reduce data
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noise—dimensions with low significance correspond to noise and thus
affect performance negatively. Also, for the sake of topic segmentation,
we are only interested in the salient document concepts. Here the pro-
posed approach also differs from the previous art, in that I explore ef-
fects of very low dimensionality, as opposed to Choi (Choi et al., 2001),
where the golden IR standard of hundreds of dimensions was used. An
interesting algorithmic feature of LSI is that concept spaces are nested:
once we have obtained a document representation in the 100 most signif-
icant dimensions, we may work with the document in a ten dimensional
space by simply omitting all but its first ten dimensions. This allows us
to produce and store a single latent model, and tune concept granularity
by only adjusting the latent space dimensionality.

Once the new context representations are obtained, context similarity
is computed by the standard cosine similarity measure (see also Sec-
tion 2.3):

cossim(vi, vi+1) =
vTi · vi+1
|vi||vi+1|

.

By computing cosine similarity between the consecutive pseudo-
document vectors we obtain a one-dimensional digital time series, which
is then smoothed and analyzed for local minima. Figure 5.1 shows a side
by side comparison of LSITiling and TextTiling on that same input doc-
ument; it is apparent the two signals have very different signal variance.
With LSITiling, most of the signal for overlapping pseudo-documents
runs at a near exact-match (cosine similarity score of 1.0), with occa-
sional drops near the suspected segment boundaries. This allows us
to reliably set the segmentation threshold at a high number (such as
1.0), as opposed to TextTiling, where the threshold is set according to a
particular combination of signal mean and variance.

To test applicability of this new algorithm on more general data, and
to establish a way to automatically determine its internal parameters, a
series of experiments were conducted.
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Figure 5.1.: A comparison of smoothed LSITiling and TextTiling signals
on a sample input text of 16,634 tokens. The TextTiling
threshold is set to signal mean minus half its standard devia-
tion (as proposed by Hearst). The black vertical lines denote
the true segment boundaries. Compare these to the blue dots
along threshold lines, which denote segment boundaries pro-
posed by the respective algorithms. In this example, LSITiling
missed one segment boundary. TextTiling missed no bound-
ary but produced seven additional, erroneous boundaries.

5.4 experiments

5.4.1 Evaluation Methodology

Given an input document and a segmentation proposed by a segmen-
tation algorithm, we seek to numerically capture the quality (or “close-
ness”) of this segmentation, with respect to a true segmentation (the
“ground-truth”). This is a common concept in IR evaluation. However,
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the traditional IR evaluation measures of precision and recall are not
suitable, because they penalize near-misses too much. We would like to
penalize errors more “softly”, or gradually, depending on the distance
between the true and the proposed segment boundary. For this reason,
I chose the WindowDiff metric proposed in (Pevzner and Hearst, 2002).WindowDiff
The idea is to run a window of fixed length through the input text, tak-
ing note of how many times the number of proposed and real segment
boundaries within the window disagree. The length of this window
is set to one half of the average true segment length. Resulting error
value is scaled to lie between 0.0 and 1.0 (0.0 being the best and 1.0 the
worst score). For a discussion of WindowDiff’s advantages over the pre-
viously used Pk probability metric, as well as its theoretical justification,
see (Pevzner and Hearst, 2002).

5.4.2 Datasets

Evaluating segmentation performance on real documents is problematic.
This stems from the difficulty of obtaining a referential (“true”) segmen-
tation. Indeed, given two human judges, three proposed “true” segmen-
tations are likely to appear. One way to overcome this difficulty is to
combine results of multiple human judges. Another way is to create an
artificial document by merging several smaller texts that deal with dif-
ferent topics. This way, although the resulting document is artificial, we
can evaluate segmentation quality more precisely, because the segment
boundaries are known exactly. Following other work in the field of topic
segmentation, I adopted the latter approach for the following two sets
of experiments.

In the first set, a collection of 31 text passages was assembled. These
were picked to represent various topics and styles. 24 of these passages
were written in English (both by native and non-native speakers), two
in German, one in Czech and one in Dutch. Also present were text pas-
sages of unidentifiable language, such as an ASCII art picture or text
table drawings. These 31 passages thematically covered law, biology,
computer science, art, religion and politics. The texts took many dif-
ferent forms, including book excerpts, scientific papers, paper abstracts,
text questionnaire, executive summary, part of a stage play, an interview,
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Table 5.1.: Corpus statistics for the first corpus (segments coming from
a pool of 31 documents) and the second corpus (segments
from the BNC). Lengths are given in tokens, with the standard
deviation in brackets.

corpus #docs segments per avg. document avg. segment
document length length

corpus #1 525 1–14 51,549 (32,883) 7,003 (5,711)
corpus #2 700 10 1,766 (474) 177 (79)

product overview or an end user license agreement (EULA). Two of the
passages come from poor book OCR, resulting in much garbled content.
All passages were chosen with requirements that

• they deal with mutually exclusive topics, so that no matter how
we concatenate them, the true segment boundaries are exactly at
the points of concatenation,

• and that they are real-world documents, the concatenation of
which may conceivably appear in a digital collection.

Apart from the lack of pair-wise semantic overlap between passages,
no other constraints were placed and no text postprocessing was done.
Passages had widely varying lengths and formatting, mimicking the re-
quirements placed on segmentation algorithms mentioned in Section 5.1.
From these passages, a corpus of 525 documents was assembled. Each
document was created by merging one to fourteen passages, which were
picked randomly without repetition. Each test document is thus made
up from one to fourteen true segments, and the segmentation algorithm
then tries to retrieve these segments given their concatenation as its only
input. Average length is 7,003 tokens per segment and 51,549 tokens
per document. These corpus statistics are also summarized in Table 5.1
under “corpus #1”. Notable is the very high passage length deviation,
implying text segments of very different lengths.

5.4.3 Algorithm Comparison

I will consider six algorithms in the comparison:
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hearst C implementation of the TextTiling algorithm from (Hearst,
1994), with default parameters2.

texttiling My own, slightly modified Python implementation of the
same algorithm. The modification is in the way final boundaries
are determined and was motivated by the abysmal performance
of the original implementation. Rather than selecting boundaries
based on signal mean and variance, a fixed threshold of 0.2 is
set. The value of 0.2 was selected for its good performance in
preliminary experiments. It was not tuned for this dataset, and
thus may not be optimal.

c99 Choi’s Java implementation of his C99 algorithm, with default
parameters3.

lsitiling Algorithm described in this chapter, with default parame-
ters. These exactly equal the TextTiling parameters, with the di-
mensionality of the latent space set to 5 and the gap threshold
equal to 1.0. Again, these parameters were predetermined without
looking at the corpus.

fixed An algorithm which inserts a segment boundary after each block
of tokens, irrespective of document content. The block size equals
120 tokens by default.

random A referential algorithm which splits document randomly. The
number of segments is selected randomly to lie between one and
one plus a thousandth of number of document tokens.

Overall accuracy results on the first corpus are summarized in Ta-
ble 5.2 and Figure 5.2 (left). Figure 5.2 (right) lists average performance
over documents which share the same number of true segments. LSITil-
ing consistently outperforms all other algorithms, with the exception of
TextTiling for less than 3 true segments. The poor performance of the
original TextTiling algorithm (called Hearst here) is due to the way it

2 As obtained from http://elib.cs.berkeley.edu/src/texttiles, March 2007.
3 Downloaded from http://www.lingware.co.uk/homepage/freddy.choi/software/
software.htm, March 2007.

http://elib.cs.berkeley.edu/src/texttiles
http://www.lingware.co.uk/homepage/freddy.choi/software/software.htm
http://www.lingware.co.uk/homepage/freddy.choi/software/software.htm
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Table 5.2.: Experiment results for the first corpus. Numbers show sta-
tistical WindowDiff characteristics aggregated across all docu-
ments.

document scores LSITiling TextTiling C99 Random Hearst Fixed
WindowDiff mean 0.345 0.374 0.566 0.567 0.950 0.995

WindowDiff stddev 0.186 0.164 0.217 0.275 0.177 0.023

sets its threshold. Upon inspection, it turns out that the segmentation
boundaries are being inserted after every couple of sentences, and the
WindowDiff metric marks this nearly as bad as the Fixed algorithm. The
modified TextTiling version with fixed threshold performs much better
and, in fact, outperforms C99. Poor performance of C99 (which is on par
with the Random algorithm here) is surprising. I suspected that a possi-
ble reason for such discrepancy between results reported in (Choi, 2000)
and my results may lie either in the different metric used (WindowDiff
vs. Error Rate) or in the fundamentally different datasets used. To clarify
this issue, I ran another set of experiments, on a different corpus more
closely mimicking the setup of (Choi, 2000).

Table 5.3.: Experiment results for the second corpus

document scores C99 LSITiling TextTiling Random Fixed Hearst
WindowDiff mean 0.175 0.345 0.372 0.378 0.388 0.442

WindowDiff stddev 0.083 0.062 0.038 0.035 0.098 0.092

The second corpus was created according to Choi’s description, with
the exception that the British National Corpus (BNC) was used instead
of the Brown corpus. 700 documents were constructed by merging pre-
fixes of ten random BNC documents. The number of true segments was
thus fixed to 10, as opposed to 1–14 range from the first experiment. A
“document prefix” here simply denotes the first few sentences extracted
from a particular document. The length of the prefix was selected ran-
domly between 3 and 11 sentences for 400 documents, between 3–5 sen-
tences for 100 documents, 6–8 sentences for another 100 documents and
finally 9–11 sentences for the remaining 100 documents. This is the exact
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Figure 5.2.: Left: WindowDiff results for the first corpus. Right: For each
number of segments 1–14, scores for all documents in the
first corpus with exactly that number of true segments were
averaged. This figure compares how different algorithms
cope with increasing topical fragmentation of input texts.

same configuration as used in (Choi, 2000). As a general remark, these
settings more closely follow the news feed segmentation scenario, with
rather short true segments and smaller variation in true segment lengths.
Data statistics are summarized in Table 5.1 under “corpus #2”. For this
dataset, C99 clearly outperforms all other algorithms by a large margin
(Table 5.3 and Figure 5.3). It would appear that C99 is well suited for
this particular problem, and not so well suited for the IR scenario with
widely varying segments of considerable size. On this second corpus,
although it lagged far behind C99, LSITiling (still with the default pa-
rameters) outperformed all other algorithms.

5.4.4 Tuning the Parameters

The choice of value for the latent space dimensionality parameter is not
straightforward. The next series of tests therefore sought to establish a
relationship between the data and this parameter. Ideally, we would like
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Figure 5.3.: Experiment results for the second corpus

to make setting of this parameter transparent to the user, so that LSITil-
ing requires no additional parameters to these of TextTiling. Remem-
ber that in the previous experiments, the semantic space dimensionality
value was set to be 5 for all documents. To establish relationship be-
tween the number of segments and the dimensionality (also referred to
as kDim), I evaluated LSITiling again for each document of the first cor-
pus, with kDim values between 1 and 100. As an example, Fig. 5.4 (left)
shows average scores for all documents that have 3, 5 or 10 true seg-
ments. For these documents I force LSITiling to return respectively 3, 5

or 10 proposed segments as well, by splitting the input document at the
3, 5 or 10 gaps with most dissimilar left and right contexts. From this
graph we may observe that the optimal kDim value appears to equal
the true number of segments. Going through the same procedure for
all other segments number (recall that the first corpus has between one
and fourteen true segments per document, unlike the second where the
number of referential segments is always ten) and plotting the results
we obtain Fig. 5.5. The plots denote all kDim values for which the score
was within one standard deviation from the optimal value, with plot
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Figure 5.4.: Left: Average kDim scores for documents with selected
number of true segments. Scores for kDim values above
20 did not improve and were clipped from the figure to
improve readability. Right: Comparison of kDim selection
strategies.

intensity decreasing as distance to optimal increases (solid black dots
denote the best scores). From this graph we may observe three prevail-
ing trends:

1. The horizontal line at true segments equal to 1 is trivial—it simply
shows that for one true segment, with LSITiling forced to return
one true segment, the segmentation is (trivially) perfect.

2. The second trend is diagonal—it shows that the correlation be-
tween number of segments and kDim may in fact be as simple
as linear.

3. The third trend is the vertical line at small kDim. This is not trivial
and shows that basing segmentation on a very small, fixed number
of latent dimensions may be justified. This is in contrast to (Choi
et al., 2001), where the authors use hundreds of latent dimensions
in their proposed LSI algorithm.

Figure 5.4 (right) summarizes these results with respect to the number
of document segments. It plots the original LSITiling result (kDim equal
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Figure 5.5.: Best kDim scores per number of segments. See text for
explanation.

to 5) against results obtained by fixing the number of hypothesized seg-
ments to the true number of segments. LSITiling best denotes the results
obtained by “magically” picking the best kDim for each number of seg-
ments. It is included for illustrative purpose only, because in practice
we obviously do not have a referential segmentation to determine what
the best kDim is. LSITiling opt plots the results obtained by setting
kDim to the number of true segments (the diagonal trend). Although
not straightforward, it is feasible to determine the number of segments
for new, unseen texts4. Also included in the graph for reference are the
TextTiling scores, where the algorithm is forced to return segmentation
with a fixed number of segments in the same way LSITiling was. We can
see that for low number of true segments, all forced algorithms perform
better than the default LSITiling. This means that the default LSITiling
overestimates the number of true segments here. However, for higher
number of segments, the default LSITiling performs comparably to LSI-
Tiling opt and forcing it to return a fixed number of segments offers on
average no improvement.

4 Clusterization techniques (such as the one used in C99) can be employed here, and in
particular Spectral Graph Analysis, close in spirit to SVD, seems promising.
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5.5 discussion

This chapter presented a novel algorithm for semantic text segmentation.
The core idea of this algorithm is using Latent Semantic Analysis
on overlapping document chunks, and comparing topic deviations by
mean of a window sliding through the text. Although the algorithm
satisfies the Information Retrieval needs for robustness, independence
of language, independence of domain and of adjustable segmentation
granularity outlined in the introduction, it is qualitatively is still far off
human performance. Its target application is one where heterogeneous
texts of widely varying lengths can be expected. Here it exhibits
encouraging performance and outperforms other commonly used (un-
supervised) algorithms. Its robustness draws from design which does
not rely on linguistic tools such as sentence or paragraph boundary
disambiguation, language dependent stemmers, stop-lists and thesauri.
For the same reason, its crude and statistic-based behaviour is mainly
suited for refinement of Information Retrieval systems, where a missed
or superfluous boundary is not critical for overall system usability.

Perhaps the most surprising discovery comes from analysis of LSITil-
ing’s internal parameter of latent space dimensionality. This parameter
can be tuned automatically or, as I showed above, simply left constant at
a very small number. This is in contrast to the body of previously pub-
lished literature, which generally relies on setting the dimensionality to
magical multiples of 100, based on results from LSA research in other
IR areas.

There are several ways in which the approach of LSITiling could be
extended. Firstly, the notion of context overlap could apply equally
well to other semantic models, such as Latent Dirichlet Allocation,
Non-negative Matrix Factorization and other Vector Space Models from
Chapter 2.5. Secondly, the relationship between the amount of overlap
within the sliding window and LSITiling performance could deserve an
additional study.
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C Z E C H D I G I TA L M AT H E M AT I C S L I B R A RY

In the previous chapter, I described an application of unsupervised
semantic analysis to the problem of topic segmentation. This is an
internal system task, not directly observable by the end user. In contrast,
in this chapter I will presents work done on semantic analysis in
the context of digital libraries. The goal is to directly improve user
experience, through enabling similarity browsing in the Czech Digital
Mathematics Library, DML-CZ1.

This work was published at the The Seventh International Conference on
Mathematical Knowledge Management (MKM) (Řehůřek and Sojka, 2008)
and was also a part of my project within the Rector’s Programme to
Support MU Students’ Creative Work in 2010.

6.1 motivation

Mathematicians from all over the world dream of a World Digital Math-
ematics Library (Jackson, 2003), where (almost) all of reviewed math-
ematical papers in all languages will be stored, indexed and search-
able with the today’s leading edge information retrieval machinery.
Good resources towards this goal—in addition to the publisher’s digi-
tal libraries—are twofold:

1. “Local” repositories of digitized papers such as NUMDAM
(Bouche, 2008), DML-CZ (Sojka, 2005), or born-digital archives CE-
DRAM (Bouche, 2006)), arXiv.org2.

1 http://dml.cz
2 http://arxiv.org/archive/math
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2. Two review services for the mathematical community: both
ZentralBlatt Math3 and Mathematical Reviews4 have more than
2,000,000 entries (paper metadata and reviews) from more than
2,300 mathematical serials and journals.

Google Scholar5 is becoming increasingly useful in the meantime,
but lacks specialized math search, plus metadata guessed from parsing
crawled papers are of low quality (compared to the controlled reposito-
ries).

Table 6.1.: Example of Math Subject Classification (MSC) categories for
the top-level category 20: Group theory and generalizations.

MSC Category description Remark
20 Group theory and generalizations primary MSC

20.30 Abelian groups historical (1959-1972)
20.92 Semigroups, general theory historical (1959-1972)
20.93 Semigroups, structure and classification historical (1959-1972)

20Dxx Abstract finite groups
20Exx Structure and classification of infinite or

finite groups
20Fxx Special aspects of infinite or finite groups
20Kxx Abelian
20L05 Groupoids (i.e. small categories in which

all morphisms are isomorphisms).
For sets with a single binary
operation, see 20N02; for topo-
logical groupoids, see 22A22,
58H05.

20Mxx Semigroups
20Nxx Other generalizations of groups
20P05 Probabilistic methods in group theory See also 60Bxx.

Both review services agreed on the supported Math Subject Classifica-
tion (MSC), a two-level hierarchical classification scheme6. Most jour-
nals request authors to include MSC classification tags when submitting
articles for publication; however, most retrodigitized papers published
before 1990 have not been classified by MSC yet.

3 http://www.zblmath.fiz-karlsruhe.de/MATH/
4 http://www.ams.org/mr-database
5 http://scholar.google.com
6 http://www.ams.org/msc/

http://www.zblmath.fiz-karlsruhe.de/MATH/
http://www.ams.org/mr-database
http://scholar.google.com
http://www.ams.org/msc/
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6.2 msc classification

Within the DML-CZ project we have investigated possibilities to classify
(retrodigitized) mathematical papers by machine learning techniques,
to enrich math searching capabilities and to allow semantically related
search. Text of scanned pages is usually optically recognized, so
machine learning algorithms may use full text in addition to metadata
(and reviews, if any) to aid training.

Classification is an example of supervised text analysis: the training
algorithm requires labelled examples with MSC codes assigned, in order
to learn a decision function (a “classifier”) that will thereafter automat-
ically assign MSC codes to new, unlabelled articles. In (Řehůřek and
Sojka, 2008), we have investigated several machine learning algorithms
with respect to the quality of the resulting classifier. Detailed evaluation
shows that with almost all methods we can easily exceed 90% classifica-
tion accuracy to classify the first two letters of MSC (the primary MSC).
With fine-tuning, the best method (Support Vector Machine with Mutual
Information feature selection, atc term weighting and 500–2000 features)
we can increase the accuracy to 95% or more.

Since the focus of this thesis is unsupervised learning, I will not go
into detail of our MSC classification experiments. Instead, I will turn
to exploratory data analysis of the DML-CZ library, where the goal is to
offer similar articles to the interested user, without making use of any
metadata (MSC codes or otherwise).

6.3 datasets

We used three digital libraries as data source for our experiments:

1. Metadata and full texts of mathematical journals covered by the
DML-CZ project During the first three years of the project, we have
digitized and collected data in a digital library, accessible via web
tool called Metadata editor7. To date there are 351 volumes in the
digitized part of 12 journals: 2,443 issues, 26,987 articles on 276,026

pages.

7 editor.dml.cz

editor.dml.cz
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2. arXMLiv, a project for translating the arXiv library into XML with
semantic MathML mark-up. We used part of arXMLiv that deals
with mathematics, for a total of 20,666 articles.

3. 17,636 fulltext articles from the NUMDAM repository.

All 65,289 articles were tokenized and converted into bag-of-words
vectors. We also extracted mathematical formulae where possible
(arXMLiv and digital-born parts of DML-CZ), and treated them as ad-
ditional vector space dimension. Here the hope was that mathemati-
cal mark-up, when available, may aid similarity assessment, in a sim-
ilar way to words. The final dimensionality (size of vocabulary plus
mathematical formulae) was 355,025 features. The implicit 65,289 ×
355,025 matrix was very sparse (39 million non-zero entries, or density
of 0.167%), which is expected and common in NLP applications.

We did not perform any additional preprocessing steps beyond remov-
ing stop words (word types that appear in more than 30% of documents)
and word types that appear in less than 5 documents (mostly OCR and
spelling errors).

6.4 topic modelling

For each document in our database, we periodically pre-compute the
ten most semantically related articles and present them to the user
through our web interface. Figure 6.1 illustrates these similarities for
one randomly selected article.

A natural question is, which method of semantic analysis performs
the best? For example, statistics show that the mean difference between
normalized cosine similarity scores produced by TF-IDF vs. LSA is
0.0299, with a standard deviation of 0.037. Inspection reveals that in
most cases the scores are indeed very similar, but there are also many
pairs of documents for which the two methods vary widely, as the
relatively large standard deviation would suggest. In Appendix B, I
give an example of a pair of documents where TF*IDF suggested almost
no similarity (score of 0.08) while LSA scored 0.98, i.e., near identity.

Examples like these are indicative of a failure of plain word overlap de-
tection methods (TF-IDF is basically a weighted word unigram model),

http://www.arxiv.org/
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Figure 6.1.: Web interface for similarity browsing within the DML-CZ
library. Screenshot taken from http://dml.cz//handle/
10338.dmlcz/102320/SimilarArticles.

and are therefore also interesting from a plagiarism detection perspec-
tive. Finding actual plagiates in our dataset is unlikely, due to the highly
specialized nature of the domain (mathematics) and its structured and
dedicated community, where each article is officially reviewed and clas-
sified by experts before publishing (with the review becoming perma-
nently a part of that article, with the reviewer’s name attached). Still,
out of curiosity, we examined all pairs of highly similar articles, to see if
we could find any cases of plagiarism within our union of articles from
three different repositories.

The results were published in (Řehůřek, 2008a). Analysis shows
that all suspicious document pairs are in fact innocuous conference
announcements (differently worded though clearly templated), in-
memoriams and the like—the documents in Appendix B are a good

http://dml.cz//handle/10338.dmlcz/102320/SimilarArticles
http://dml.cz//handle/10338.dmlcz/102320/SimilarArticles
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example. If there was plagiarism present in the dataset, its complexity
was beyond the methods’ ability to detect it.

Figure 6.2.: An example of pairwise document similarities on docu-
ments about MSC 20 (Group theory and generalizations, see
Table 6.1). Each pixel represents similarity of one pair of
documents, the lighter the colour, the more similar. Note
that the diagonal is necessarily white, because a document
is always maximally similar to itself. The method used is
Latent Semantic Indexing. See text for information on the
highlighted regions.

6.5 evaluation

Perhaps more interesting than comparing one semantic analysis method
to another is to consider how well do these similarities translate to
semantic relatedness as perceived by us, human users. Unfortunately
we do not have a referential tagged corpus of pair-wise document
similarities to compare our results against. However, thanks to the
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nature of our dataset, we have access to article metadata. One piece of
metadata present for each of our articles is its position within the MSC
classification hierarchy. Although this metadata was not used during
similarity computations (all used methods are unsupervised), we can
use it for evaluation.

In Figure 6.2, we selected one node in the MSC hierarchy and con-
sidered only those documents in our collection that fall into this cat-
egory. The category is named 20: Group theory and generalizations
and is further subdivided into smaller categories (20Dxx Abstract finite
groups etc.), see Table 6.1. We group documents along the axes accord-
ing to these subcategories and observe how well does the suggested
similarity—represented by shades of gray—correspond to subcategory
clusters suggested by MSC. We may observe there are four main “light"
clusters, that is, clusters of documents that have high in-cluster simi-
larity and low similarity to articles outside of the cluster. These are
highlighted in red, yellow, green, blue and correspond to articles from
categories 20Dxx+20Exx+20Fxx, 20.30+20Kxx, 20.92+20.93+20Mxx and
20Lxx+20Nxx, respectively. Although these visual results cannot sub-
stitute full analytical evaluation, this is an encouraging result: the LSA
method correctly identified MSC boundaries assigned by hand by hu-
man reviewers, despite knowing nothing about MSC and not being al-
lowed to use MSC during training.

Note that all of the suggested clusters are meaningful and also that
the algorithm correctly linked obsolete categories 20.92 and 20.93 (used
between the years 1959 and 1972) with their new version of 20Mxx.

6.6 do formulae matter?

During article parsing, we extracted mathematical formulae from digital
born documents. Are these additional features helpful for topic mod-
elling? We used our algorithm from Chapter 4 to compute LDA topics
over the 20,666 arXMLiv articles, which contain formulas in MathML
notation. The result is shown in Table 6.2, where we can see that some
short general formulas (delimited by “$” characters in that table) are in-
deed highly indicative of topic. Some of these features are even in the
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Table 6.2.: Ten most probable features for fourteen topics coming from a
50-topic LDA model. The model was trained on the arXMLiv
database of 20,666 math articles. See Figure 6.3 for how these
topics can combine to describe documents.

topic 1 topic 5 topic 9 topic 10 topic 11 topic 13 topic 14
$C∗$ module lattice subgroup $φ$ prime operators

algebras ring lattices orbit triple rational measure
neumann modules vectors subgroups jordan primes norm

von ideal code irreducible triples galois spectral
unital finitely automorphism $Γ$ homomorphism adic transform

unitary rings norm abelian $E$ characteristic hilbert
projections prime primitive character $ψ$ fields valued

$ ∗ $ exact codes representations ternary conjecture spectrum
subalgebra projective roots orbits $Z$ power fourier

trace injective unimodular parabolic projections $E$ converges

topic 16 topic 24 topic 29 topic 30 topic 31 topic 32 topic 39
graph process $Ω$ curve matrices algebras random

vertices stochastic $(i)$ curves partition module probability
vertex measure $(ii)$ surface row graded distribution
edge initial loop genus column modules process
edges processes kernel plane partitions subalgebra measure
path motion bergman lines entries associative bound

graphs solutions consequently rational odd homomorphism variables
tree brownian domain intersection $λ$ ideal markov
$v$ weak $K$ singular block $D$ model

paths diffusion $(iii)$ divisor rows central walk

first position, meaning they are the single most salient feature for the
given topic.

As a reminder of Chapters 3 and 4, semantic models like LSA or LDA
represent each input document as a soft mixture of topics. Figure 6.3
showcases two examples of such mixtures. It is produced by using the
LDA model from arXMLiv described above to infer topic mixtures of
documents of four DML-CZ articles. Note that the two articles depicted
in that figure were not used at all during LDA training; the topic
inference happens over new, unseen documents using a pre-trained
model. Semantic similarity browsing in the digital library is realized
through comparing such topic distributions, as opposed to (or rather, in
addition to) the more common keyword search.
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topic 13

71.8%

topic 31

12.4%

other

15.8%

(a) “On superpseudoprimes”

topic 5
8.1%

topic 9

23.1%

topic 10

23.3%

topic 13

16.4%

topic 26

7.1% other

22.0%

(b) “Recognizability in the lattice of convex
`−subgroups of a lattice-ordered group”

Figure 6.3.: LDA topic mixtures for two DML-CZ documents. Only top-
ics represented by at least 5% are explicitly plotted; contri-
bution of all smaller topics is aggregated under “other”. See
Table 6.2 for a quick view of some of the topics. The two
articles are On superpseudoprimes (http://dml.cz/handle/
10338.dmlcz/130094) and Recognizability in the lattice of con-
vex `−subgroups of a lattice-ordered group (http://dml.cz/
handle/10338.dmlcz/101966) and were not part of the train-
ing corpus.

6.7 conclusion

Digital libraries are an ideal test-bed for methods of unsupervised text
analysis. The vast amount of (often unstructured and very noisy)
data coupled with a need to intelligently guide user in his quest for
information call for an automated approach to data mining.

The results of supervised analysis (Mathematics Subject Classification
categorization) show feasibility of the machine learning approach to
classification of mathematical papers. We used standard algorithms

http://dml.cz/handle/10338.dmlcz/130094
http://dml.cz/handle/10338.dmlcz/130094
http://dml.cz/handle/10338.dmlcz/101966
http://dml.cz/handle/10338.dmlcz/101966
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such as linear support vector machines and artificial neural networks,
with preprocessing tools of feature selection, stemming, term weighting
etc. Automated algorithms of this sort could greatly help with reviewer
assignment for new article submissions, to name just one concrete
application of our research.

Unsupervised analysis (similarity browsing, data exploration) is no-
toriously harder to evaluate; nevertheless, the results presented in this
chapter look promising. In particular, topics reconstructed by the Latent
Dirichlet Allocation show good interpretability and semantic coherence.
We are offering an evaluation form to our users (mathematicians access-
ing the DML-CZ library), but a statistically significant amount of data
proves hard to collect. In the future, we plan to conduct controlled hu-
man experiments to assess topic quality, following the evaluation frame-
work proposed in Chang et al. (2009).

An extension of this line of research is also part of the European
Digital Mathematics Library (EuDML) project8.

8 http://eudml.eu/

http://eudml.eu/


7
L A N G U A G E I D E N T I F I C AT I O N

Automated language identification of written text is a well-established
research domain that has received considerable attention in the past. By
now, efficient and effective algorithms based on character n-grams are
in use, mainly with identification based on Markov models or on charac-
ter n-gram profiles. This chapter will investigate the limitations of these
approaches when applied to real-world web pages. The challenges to be
overcome include language identification on very short text segments,
correctly handling texts of unknown language and segmenting docu-
ments written in multiple languages.

The work described here was published in (Řehůřek and Kolkus,
2009) and presented at the 10th International Conference on Intelligent
Text Processing and Computational Linguistics (CICLing) in Mexico City. It
places particular emphasis on classification robustness and efficiency, as
it was developed by me and Milan Kolkus for the Seznam.cz company,
where it is used in production in its fulltext search engine.

7.1 motivation

The amount of information available on the Internet is staggering and
still growing at a fast pace. To make this information accessible,
applications have sprung up to fill the void and gather, process and
present Web information to the knowledge-hungry user. Unfortunately,
documents on the Web have historically been created with human reader
in mind, in formats such as HTML, and are not readily understandable
by computers. Although XML and semantic mark-up (e.g. the xml:lang
attribute, or the <div lang="en"> construct) have been introduced to
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alleviate these problems, reality remains that many documents do not
make use of metadata tags or, even worse, make use of them incorrectly
and provide misleading information.

By not having metadata provided for us, or by deciding not to trust
it, we are left with deducing information from the text itself. This is
the domain of Natural Language Processing (NLP) and text mining.
This article deals with one aspect of text mining, namely telling which
language (or languages) is a given Web page written in, if any.

7.2 related work

A general paradigm in automated language identification is to create
language models during a training phase and compare input documents
against these models during language identification. This places the task
into the domain of supervised learning methods. Another consequence is
that the set of target languages needs to be known beforehand, which
makes language identification a classification problem.

A “common words” approach (Ingle, 1980) is based on the observation
that for each language, there is a small class of words that carry little
information but make up a large portion of any text. These are called
the function words or stop words and their presence is to be expected, as
word distribution in natural languages follows Zipf’s law.

In (Dunning, 1994) it is noted that humans need surprisingly little
in order to correctly identify a language. Interestingly, this is the case
even if they are not proficient in that language or when the text snippet
is quite short. This observation leads to a class of algorithms based
on character (or even byte) n-grams, as opposed to more linguistically
refined syntactic or semantic methods.

• A popular tool called textcat (Cavnar and Trenkle, 1994) constructs
a ranking of the most frequent character n-grams for each lan-
guage during the training phase and proclaims this ranking the
language model. For classification, a ranking is constructed for the
input document in the same fashion and is compared against each
available language model. The closest model (in terms of ranking
distances, see (Cavnar and Trenkle, 1994) for details) wins and is
returned as the identified language.
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• Another character n-gram approach pioneered by (Dunning, 1994)
computes likelihood of generating the observed character se-
quence explicitly, through use of higher order Markov models. Let
S be a sequence which consists of n characters (s1, . . . , sn). Then
the probability this sequence was generated by Markov model L of
order k is given by

P(S | L) = p(s1, . . . , sk | L)

n∏
i=k

p(si+1 | si−k+1 . . . si,L),

where the first factor is the initial state distribution and the con-
ditional probability describes transitions. Training the language
model consists of estimating these transition probabilities. Again,
winner is the language with the best likelihood of generating the
input text. It is observed that using character trigrams, i.e. Markov
models of order 2, already gives optimal results and increasing
the model order therefore cannot affect performance much. For a
comparison of character trigrams to “common words”, see (Grefen-
stette, 1995).

• A related approach makes use of Shannon’s information theory
and compares language entropies (Teahan, 2000). Here Markov
models are also estimated based on training data. In contrast
to (Dunning, 1994), all models of orders 0, . . . ,k are used and
their relationship explicitly modelled. This allows the algorithm
to fall back to lower order models in case of insufficient data
through mechanism called escape probabilities. Decision function
views input as a stream of characters and in accordance with
information theory tries to predict the next character in the stream.
Success of these predictions is measured by cross-entropy and
the model with the lowest cross-entropy after having processed
the whole stream wins. Because of its ties to information theory
and language compression, this technique is sometimes called the
compression technique.

Apart from individual algorithms, research into language recognition
has also identified key factors which directly influence performance:
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• Size of the training data. Methods are evaluated based on how
quickly their models converge, given differing sizes of training
corpora. Note that more is not necessarily better here, as there
is a risk of overtraining or overfitting the model with training data.

• Size of the input text. Methods can be distinguished by how much
text they need to be given in order to reliably identify its language.
Amount of text can be roughly divided into small (a phrase, less
than 30 characters or up to 5 words), large (a paragraph, more than
300 characters or 50 words) and medium (a sentence, in between).

7.3 proposed method

Motivation for Change

Summing up the previously mentioned articles, there are several reasons
behind the success of language modelling via character n-grams:

• Fast convergence. Very small training corpora (in the order of
hundreds of kilobytes of text) are required to learn the models. See
e.g. (Souter et al., 1994) for a study on speed of model convergence
for character bigrams and trigrams.

• Robust. As long as the overall letter distribution in input doc-
ument follows that of training examples, problematic language
phenomena such as neologisms (words newly introduced into the
language), spelling errors, rare inflections or unknown words are
handled gracefully.

• Domain independent. In (Dunning, 1994) this approach was ap-
plied to a domain as distant as that of genetic sequence identifica-
tion. Another often highlighted feature is that character n-gram
methods do not require tokenization of the input, making them
also suitable for Asian languages where tokenization is an interest-
ing challenge in itself.

We implemented, for some time used and then evaluated an algorithm
based on the compression technique (Teahan, 2000). We estimated all
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i-gram distributions for i = 0, . . . ,n and then combined them through
an Expectation Maximization (EM) smoothing algorithm on held-out data.
We were interested in detecting nine European languages: French (fr),
English (en), Italian (it), Spanish (es), Slovakian (sk), Czech (cs), Slovenian
(sl) and Polish (pl). Although this method worked almost perfect on our
test data, a number of real-world issues soon became apparent when
applied to the task of Web page classification. The main problem was
not insufficient accuracy of classification as such, but rather a shift in the
formulation of the language identification problem:

• No unknown language option. All methods listed above based on
entropy, Markov processes or n-gram profiles return the nearest,
best-fitting language. They assume that a) the set of languages is
complete, known and trained for beforehand and b) that the input
text is in exactly one of them. While the first assumption can be
dismissed as our own choice, the latter is unrealistic for the Web.

• Multiple languages. In an also rather frequent scenario, there
are parts of the input document which are in different languages.
This may stem from a page’s logical structuring (menu, text body,
copyright notices) but also from the nature of the text body itself.
This moves the document away from any one model and the
language models become mixed in undesired ways. As a result,
the document may even be identified as a completely unrelated
language not present in the input text at all. In our experience,
multilingual documents somehow often ended up being marked
as Slovenian.

• Close languages (same language family). As seen above, our
language set includes Slovenian, Slovakian, Czech and Polish,
which are all Slavic languages with considerable grammatical as
well as lexical overlap. This is exacerbated by the fact that real
texts on the Web often come in deaccented version, so that the
trained models are unable to even theoretically take advantage of
otherwise telling national characters (ř for Czech, l’ for Slovak etc.).

As a special case of the second point, there are many pages where
letter distribution is heavily skewed by repetition of certain words or
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phrases. This includes discussion lists with “In reply to:” fields and
so on. This problem does not come up in well-behaved corpora, but
quickly becomes a nuisance when dealing with the Web.

To address the first two issues, we tried augmenting our implementa-
tion of the n-gram algorithm. We looked for a minimum threshold for
each language that a document score has to exceed in order to be iden-
tified as that particular language, even if its score is the best available.
Note that for language detection, document length is not an issue, as
all models are evaluated on the same number of n-grams and the score
numbers are thus directly comparable. For the fixed threshold to work,
however, the scores need to be normalized to negate the effect of vary-
ing document lengths, as adding even one n-gram changes the order of
magnitude of the probability scores.

Although we tried setting this threshold automatically, based on held-
out training data, the results were not satisfactory. It appears that
the per-character cross-entropies are dependent on the content of text
n-grams in a way that prohibits direct absolute comparison against any
fixed threshold. In other words, it proved impossible to find a threshold
that would allow us to tell “this best fitting language is in fact an error”.
We also tried learning a special unknown language model from a hotch-
potch of documents in various random languages. This worked better
and solved the Slovenian classification problem, but seems rather ad-hoc
and theoretically unfounded.

To avoid the headache of further complicating an already complex
algorithm, we set out to try a different approach.

Dictionary Method

In (Dunning, 1994), dictionary methods (i.e. methods based on words
rather than characters) are discussed and dismissed, based on their best
known representative, “common words", being too restrictive and only
applicable to longer texts.

Going through the list of n-gram advantages, the benefits of broad
domain independence, no required tokenization and fast model conver-
gence will indeed have to go. Since our goal is to tell apart European
(Latin character based) natural languages, the first two are not really a
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concern. The last one, a large amount of training examples required by
the dictionary methods, was perhaps a drawback back when these meth-
ods were developed. In the present day, with Web as Corpus (Kilgar-
riff, 2001) projects and NLP advancements, fast indexing and retrieval
techniques, the amount of available data is no longer a critical issue.
The same cannot be said for runtime performance, as the same reason
why there are many documents requires us to process them at increased
speed. For these reasons we decided to revisit the dictionary method.

We take a qualitatively different approach to constructing the dictio-
nary language models. Rather than looking for words that are common
in a given language (called function or stop words), we note which words
are specific for a language, or rather, how specific they are. The foundation
of our algorithm is a relevance mapping

rel(word, language) : W × L 7→ R

where W is a set of all words present in the training data and L the set
of considered languages. We call the real-valued score of word w ∈ W
in a language l ∈ L its relevance. In other words, the mapping is not
binary as in the case of the “common words” approach, but rather a soft
grading of words. Positive relevance hints at the word being indicative
of the language, relevance around zero naturally corresponds to “no
correlation” and negative values to “this word is indicative of absence of
the language”. We will call these positive, near-zero and negative evidence,
respectively.

Naturally, the relevance mapping is constructed automatically from
labeled training data. In contrast to character n-gram models, the
convergence is much slower and significantly larger training corpora are
required. We estimate the word relevance using reasoning detailed in
(Kornai, A. et al., 2003). Their idea, although developed for classifying
documents into topics, can also be applied to our problem of language
identification. Below we give a short overview of the main assumptions
and steps behind derivation of the final relevance formula; for a more
thorough discussion on various aspects, please see the original article
(Kornai, A. et al., 2003).
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We start by noting frequencies of words w1,w2, . . . ,wN within each
language corpus and compare them to frequencies in a general, back-
ground corpus. In this context, a corpus C is simply a collection ofD doc-
uments, C = (d1,d2, . . . ,dD). For each language lang, we have a corpus
Clang of documents only in that language, plus one general background
corpus which represents a collection of documents of background lan-
guage lang0. This background language is ideally completely language
neutral, or more realistically represents the distribution of all languages
on the Web. To approximate lang0, we consider the union of all lan-
guage corpora to be the background corpus, C0 =

⋃
Clang. The uncor-

rected observed frequency of word w in language lang is then

ḡlang(w) =
TF(w,Clang)

#(Clang)
, (7.1)

with #(C) being the total number of words in corpus C and TF the
number of occurences of a word in a corpus, and

g0(w) =
TF(w,C0)

#(C0)
(7.2)

for the background language.
From the assumption of languages being modelled as Bernoulli (word

unigram) sources, the probability that a document d that contains fi
instances of word wi was produced by language lang is given by the
multinomial

P(d | lang) =

(
f0 + f1 + · · ·+ fN
f0, f1, . . . , fN

) N∏
i=0

glang(wi)
fi . (7.3)

To avoid singularities for zero frequencies, the Jelinek-Mercer smoothing
correction is introduced

glang(w) = αg0(w) + (1−α)ḡlang(w) (7.4)

for some small value of α, such as 0.1.
After substituting (7.4) into (7.3), we compute logarithm of the proba-

bility ratio that a document was emitted by lang rather the background
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language lang0 by

log
P(d | lang)

P(d | lang0)
=

N∑
i=0

filog
αg0(wi) + (1−α)glang(wi)

g0(wi)
(7.5)

An interesting observation is that negative and near-zero evidence
contributes very little to classification accuracy. In fact, accuracy actually
improves when near-zero and negative evidence is purposefully omitted.
Translated to our language identification problem, we only pay attention
to words that are highly indicative of the given language, disregarding
near-zero and negative evidence entries. This has the pleasant side-effect
of keeping the models reasonably sized, despite there being virtually
tens of millions of possible words in each language relevance mapping.
With this simplification the formula becomes an elegant and manageable∑

gL(wi)�glang(wi)

fi · rel(wi, lang), (7.6)

where rel(w, lang) = log(glang(w)) − log(g0(w)) is our desired rele-
vance of word w in language lang. Put in words, the relevance of a
word measures the orders of magnitude by which it is more frequent
in the specific language corpus compared to the background corpus.
This a surprisingly simple relationship, given we started only from the
assumption of word independence (Bernoulli model). Another way to
look at the formula is to realize that fi corresponds to Term Frequency
(TF) and rel(wi, lang) to a kind of Inverse Document Frequency (IDF)
component, linking this result to the general framework of TF-IDF clas-
sifiers. Obviously this is a sharp divergence from the idea of identifying
languages by the most “common words”.

With all pieces in place, how do we go on choosing which languages
a sequence of words belongs to? According to the above derivation,
we simply iterate over words that are distinctive of each language and
sum their relevancies. We may compare this value to a threshold to
immediately see if there was enough evidence to proclaim the document
d as belonging to language lang. But to abstract from document length,
we first divide this sum by the length of the document in words, that is,
we take average of the individual word relevancies. The final decision
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function which identifies document d as coming from language lang is
then

score(d, lang) =

∑
gL(wi)�glang(wi)

fi · rel(wi, lang)∑
fi

> tlang. (7.7)

The threshold tlang is found, for each language separately, by optimiz-
ing an objective function on held-out data. One candidate for objective
function is the F1 measure, the generalized formula of which is

Fβ = (1+β2)
precision · recall

β2 · precision+ recall
.

F1 measure is popular in Information Retrieval and defines an equal
trade-off between precision and recall. Other objective functions are
possible, depending on the desired application of language identifica-
tion. If the cost of not identifying the right language (false negative) is
higher than cost of erroneously identifying an unwanted language (false
positive), higher preference should be given to recall (e.g. via the F2 mea-
sure) and vice versa. This effectively lowers (resp. raises) the estimated
language threshold.

Contrary to results obtained from using thresholds for character
n-gram method, detecting unknown language works quite reliably (as
will be shown in the Evaluation section below). Because some words
may be indicative of several languages (such as the previously men-
tioned lexical intersection of Slavic languages), more than one language
may be recognized, too.

Practical Considerations

As noted earlier, runtime performance of classification is important. In-
terpreting equation (7.7), the algorithm consists of tokenizing input text,
averaging token relevancies and comparing this sum to a precomputed
threshold. This can be done extremely fast, using any of the many com-
monly available data structures which map strings into numbers.

As for memory considerations, the mapping that needs to be stored
is very sparse, consisting of only those words which are distinctive for
a language. In fact, the size of each language model when stored as
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Table 7.1.: Overall data and model statistics.
Language Dump size No. unique No. test documents Dictionary model

code [GB] sentences [k] small medium large size [words]
cs 4.8 2,926 814 907 814 551,126

de 39.4 27,010 461 916 762 944,450

en 208.3 74,926 448 980 998 548,649

es 18.9 10,848 520 891 742 318,423

fr 39.8 18,048 483 852 765 373,432

it 26.0 11,529 469 836 727 378,817

pl 18.0 10,157 286 878 784 799,180

sk 3.3 1,769 275 916 768 474,003

sl 2.8 1,472 249 916 795 288,442

Patricia trie (Morrison, 1968) was in the tens of megabytes, which is
comparable to size of our character pentagram models. This is not
surprising as character pentagrams already come close in length to
whole words.

We solved the practical question of obtaining large and representative
language corpora by using Wikipedia dumps1. As research into Web
corpora (Kilgarriff, 2001) rapidly progresses, it can be expected that
assembling large text collections will become less and less of a problem
in the future. It must be kept in mind however that common NLP
techniques like stemming or lemmatization may not be applied, as these
are dependent on language—the very thing we don’t know and want to
determine in the first place.

Evaluation

To evaluate our algorithm, we trained it on Wikipedia dumps of the
nine target languages. As a reminder, these are French (fr), English (en),
Italian (it), Spanish (es), Slovakian (sk), Czech (cs), Slovenian (sl) and
Polish (pl). To avoid overfitting the training data, we discarded duplicate
sentences and only used each sentence once in our corpus. Sentences
with non-Latin (mostly Asian and Arabic) characters were also ignored.
Some data statistics can be seen in Table 1, where the number of unique

1 The static HTML dump as downloaded from http://static.wikipedia.org, June
2008.

http://static.wikipedia.org
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sentences corresponds to the size of training data. In the same table we
also give final model statistics. We put aside three thousand sentences
of differing lengths for each language, to be used as test data. These
were divided into small, medium and large sub-corpora (with texts of
2–5 words, 6–50 words and over 50 words, respectively), so that each
sub-corpus contained exactly 1,000 texts. We manually checked the test
corpora and estimated that the ratio of erroneously labeled examples is

• about 10% for medium length documents (mostly municipality
and proper name enumerations),

• about 20% for long texts (same reason, plus many texts are in fact
English phrases such as song or book titles)

• and as much as 50–70% for the short texts.

Short texts are especially bad because they concentrate “sentences”
consisting of formulas, location entries, article headings with a person’s
name and lifetime and so on. All of these often refer to foreign
institutions and have no connection to the language of the main article.
Final sizes of test corpora after removing these problematic texts are
given in Table 1.

Classification results are summarized in Table 7.2, which also in-
cludes results of our implementation of the cross-entropy based char-
acter n-gram algorithm described earlier, on the same data. Recall is
measured as the ratio of true positives to all available positives (includ-
ing false negatives), precision is the number of true positives divided
by the number of all positives returned (including false positives). Note
that this gives more room for precision errors to the dictionary method,
which can return multiple false positives for each document, unlike the
n-gram method that returns at most one incorrect language per docu-
ment.

Inspection of results reveals that the errors closely follow the data
problems described above. On one hand this is vexing because it pro-
hibits more exact evaluation. On the other hand it shows that despite the
considerable amount of noise in training data (which obviously shares
the same problems as the test data) and in face of contradictory informa-
tion, the classifiers are able to generalize. However, we’d like to stress
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Table 7.2.: Precision/recall on test data, in percent.
n-gram method dictionary method

language text size text size
code small medium large small medium large

cs 81.9/75.2 96.8/96.0 100.0/100.0 64.9/84.0 85.2/96.9 97.8/99.6
pl 84.1/67.6 97.4/96.5 97.9/97.2 82.9/90.2 95.5/97.0 96.9/97.5
sk 81.6/77.7 97.7/96.9 99.3/99.0 57.8/82.9 71.4/96.6 87.6/96.7
sl 89.3/79.7 97.8/97.2 99.3/99.2 68.6/88.2 91.9/97.2 98.8/99.0
it 81.9/58.4 98.7/96.4 99.9/99,8 78.6/88.1 95.8/98.0 99.4/99.7
fr 80.1/52.9 98.3/97.3 99.8/99.6 82.7/88.7 98.4/99.0 99.5/99.6
de 85.2/73.6 98.8/98.1 99.0/98.4 85.7/91.8 98.2/99.6 98.8/99.2
es 81.5/61.6 99.0/98.1 100.0/99.9 73.2/86.4 94.3/98.9 99.3/99.8
en 81.4/51.7 99.4/98.2 99.8/99.1 86.1/91.6 99.2/99.7 99.8/99.4

Table 7.3.: Precision/recall on pruned test data, in percent.
n-gram method dictionary method

language text size text size
code small medium large small medium large

cs 93.5/92.4 98.7/98.7 100.0/100.0 73.9/99.8 86.7/100.0 98.1/100.0
en 93.1/67.3 99.7/98.6 100.0/100.0 98.4/100.0 99.7/100.0 100.0/100.0

the fact that our goal here is not to discuss the absolute numbers, but
rather to juxtapose and compare two language identification methods
on the same dataset.

To confirm our hypothesis of poor data quality, we manually checked
labels of all Czech and English test examples. The labeling error was
about 1% for medium and large texts and about 40% for texts of small
length. We expect this error to be similar for the seven remaining
languages, too. We re-ran language identification experiments on the
two manually pruned corpora, with results summarised in Table 7.3.
Many short Czech documents are classified as both Czech and Slovak by
the dictionary method (reflecting a real ambiguity of the input), which
results in lower precision but still excellent recall.

We conclude that the numbers are sufficiently high (in fact, after
discounting the test data noise, nearly optimal) for both algorithms.
The main difference and actually the reason why we developed our
dictionary method in the first place is the added value of being able
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to return a set of languages as the identification result, including the
elusive empty set.

7.4 segmenting for language

There is one item on our language identification wish-list that has not
been covered yet: correct classification of documents that contain blocks
from different languages. While our character n-gram method based
on cross entropy returns a random language in this case, dictionary
method returns an unknown language. Both results are wrong. A
practical extension to either algorithm would ideally allow us to locate
and identify all compact single-language blocks.

To our knowledge, the only attempt at language segmentation was
made in (Teahan, 2000). The authors consider all possible combinations
of language change at each character in the input text and measure the
resulting entropy on such text blocks. Although they report brilliant
results of 99.5% accuracy on character level, the method misses the mark
in terms of speed by several orders of magnitude. Even with advanced
dynamic programming optimizations, it took tens of seconds to segment
a text (Teahan, 2000).

Here we describe and evaluate an algorithm that segments input text
into monolingual blocks.

Let Slang(d) = (score(w1, lang), . . . , score(wn, lang)) be a sequence
of individual unit scores (word relevancies or n-gram probabilities) for
the n units in document d. We can view this sequence as a real-valued
signal and use signal processing to smooth the signal, removing local
extrema,

(smoothed)i = fncSIZE(score(wi−SIZE), . . . , score(wi+SIZE)), (7.8)

for any language lang. We use median with sliding window size
SIZE = 2 as the smoothing function while noting that there is a direct
connection between the smoothing window size and robustness to short
extra-lingual segments in text. These manifest themselves as sharp local
valleys and correspond to proper nouns, typing errors and other text
anomalies. Although strictly speaking they really are different from the
surrounding text, our task is to identify coherent language blocks that
are meaningful on discourse level, rather than token level.



7.4 segmenting for language 123

Once we have smoothed signals for all available languages, we iden-
tify local minima in them. This gives us a first estimate of potential
segment boundaries. The proposed segment boundaries are not final
though—many of them correspond to local minima in between two
segments of the same language. We remerge these back into a single
segment. Note that in this way we prohibit having two consecutive seg-
ments of the same language, but we may still arrive at segments with
no language assigned to them. It is also possible to have a segment with
more than one language. This means the text may have been written
in either and is indistinguishable. This often occurs with shorter cs/sk
passages and reflects real ambiguity of the input.

Complexity of the whole procedure is linear in the number of words
and languages, O(|d|× |L|).

Evaluation

To evaluate language segmentation, we constructed an artificial corpus.
The corpus contains 1,000 documents, each one of them being a con-
catenation of 1 to 4 segments in different languages. The numbers were
picked to somewhat mimick situation on the Web, with 4 languages in
a single document as an extreme case. Language segments are pooled
randomly from a collection of medium-length texts in that language (6
to 50 words).

We give this concatenation to our segmentation algorithm, with signal
scores based on word relevancies, and mark down languages predicted
for each token. This per-token evaluation records success each time a
token was assigned precisely the one language that was expected, and
failure otherwise. Accuracy is then computed as #success/(#success+

#failure). Note that assigning multiple languages or no language at all
to a token always equals an error.

The algorithm misclassified 1,420 out of possible 49,943 words. This
corresponds to 97.16% accuracy. In 603 cases, the exact boundary was
missed by one word, which is still an acceptable error for our pur-
poses. Discounting these off-by-one boundary errors, accuracy climbs to
98.34%. Closer inspection of the 817 misses left shows that some of them
come from English collocations like grand theft auto which are embedded
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inside non-English text segments and regrettably “misclassified” as En-
glish by the algorithm. The real accuracy is therefore probably slightly
higher, depending on mode of application.

Although these results are lower than those reported in (Teahan,
2000), the algorithm enjoys conceptual clarity and an impressive runtime
performance.

7.5 discussion

This chapter’s main contribution is revisiting and re-evaluation of some
of the assumptions made 15 years ago, when the domain of automated
language identification was being shaped. It proposes a straightforward,
fully automated method which learns a decision function from train-
ing data. The decision function is based on word relevancies and ad-
dresses some aching problems of popular character n-gram based meth-
ods, while retaining character n-gram’s excellent accuracy and actually
improving runtime efficiency. The algorithm tends to err on the side
of assigning all fitting languages when presented with ambiguous input
(like the aforementioned short phrases from the close family of Slavic
languages). In Information Retrieval parlance, this ensures high recall
at the cost of lower precision. Given that the superordinate task is fil-
tering out all documents not in a given, small set of languages (so that
the search engine doesn’t have to index them), high recall is the most
important factor and this behaviour is desirable.

An easily overlooked but very important benefit of using words in-
stead of character n-grams is that the system is more open to human
introspection, more predictable in ways of interpreting its results (“look-
ing inside the box”) or selectively changing its behaviour—something of
considerable value in real systems.

Built on top of this algorithm is a language segmentation algorithm,
which is based on the notion of language signal strength within the
input document. The way this segmentation algorithm was described
here makes it an extension in the proper sense of the word (language
identification works even without language segmentation), but a careful
tuning of the combined algorithm proved critical for the overall IR
system performance. Documents on the Web are often composed of
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segments in multiple languages, even when our human brain is very
efficient at picking up the “most interesting” or “salient” part and
proclaiming the document to be in a single language (of that one
part). The decision on which languages to actually attribute to the
document must be based on a reliable and efficient routine for language
segmentation. This also opens up the possibility to only index parts
of the input document. The segmentation algorithm described here is
evaluated to behave acceptably using word relevancies and solves the
problem of language identification in multilingual documents.





8
S U M M A RY

In this thesis, I examined semantic processing of unstructured text from
three perspectives. In the first part, I described several state-of-the-art
approaches to modelling semantics, which are based on the idea of
creating a semantic model from a (training) corpus of unstructered text.
Through the trained model, it is then possible to express arbitrary doc-
uments (ones from the training corpus as well as others) in a new, se-
mantic representation. In this representation, documents may be evalu-
ated as closely related despite not sharing any common words—a strict
departure from the more traditional “keyword” search systems. The ad-
vantage of using semantic models is therefore in assessing similarity at
a higher, “topical” level.

The common theme among all algorithms was their focus on robust-
ness toward input data noise and computational tractability. The sec-
ond part of the thesis dealt with my own contributions to the field,
which consisted of new training algorithms for Latent Semantic Anal-
ysis and Latent Dirichlet Allocation. The novelty lies in their focus on
scalability—the algorithms run “online”, with constant memory in the
number of training documents so that they can process arbitrarily large
input, and with computation distributed across a cluster of computers.
Also, the input document stream does not require random access. This
last point is especially relevant in environments where data is retrieved
from slow media (compressed on disk, tape, accessed through the web).
In case of LSA, the input stream does not even need to be repeatable—
the algorithm only accesses each training document once, in sequential
order (a streamed single-pass algorithm). This additional constraint allows
processing infinite input streams: the model is updated online and the
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training observations may be immediately discarded. This online, in-
cremental, streamed, distributed algorithm exhibits unparalleled perfor-
mance and makes LSA processing feasible on web-scale datasets.

In the last part I considered applicability of the general-purpose
semantic algorithms to the domain of Information Retrieval. Useful
as they are, the algorithms are nevertheless only a first step towards
a successful IR system. Issues of document heterogeneity often hurt
performance; I presented two novel algorithms for increasing topical
consistency among documents: a) by splitting documents into smaller,
topically consistent blocks (Chapters 5) and b) by splitting multilingual
documents into blocks of the same language (Chapter 7). Chapter 6

presented topic modelling applied to a real digital library, the Czech
Digital Mathematics Library, DML-CZ.

outlook

All these algorithms represent steps in the direction of more automated
and intelligent access to the vast digital repositories of today. It has
been said that “the devil is in the details”, and this is certainly true of
IR systems. Despite the theoretical advances and complex data mining
methods, expert knowledge in tuning a system is still invaluable. It
is my belief that a relatively simple system that is properly tuned by
someone with deep understanding of the problem at hand will most of
the time outperform a complex, out-of-the-box system, even if the latter
utilizes state-of-the-art techniques. In a way, this is a testament and a
tribute to the ingenuity of human mind. On the other hand, the amount
of raw digital data increases while the amount of human experts stays
roughly the same, so despite their imperfections, automated methods
considered in this thesis may serve very well in their limited goal of
assisting humans during data exploration.

This idea of bringing semantic processing to non-experts (non-
linguists and non-computer scientists) was also at the core of the de-
sign philosophy of a software package for topical modelling that accom-
panies this thesis (Řehůřek and Sojka, 2010). It is my hope (already
partially fulfilled) that such software will lead to wider adoption of un-
supervised semantic methods outside of the academic community. The



129

focus on interface simplicity and clarity has paid off in the sense that
users have found creative use for the included semantic algorithms, even
outside of the intended domain of NLP.
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Řehůřek, Radim, and Milan Kolkus. 2009. Language Identification on the Web:
Extending the Dictionary Method. In Computational Linguistics and Intelligent Text
Processing (CICLing), ed. Alexander F. Gelbukh, volume 5449 of Lecture Notes in
Computer Science, 357–368. Mexico City, Mexico: Springer. [page 109]
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A
S A M P L E C O R P U S

Table A.1 shows a toy corpus of nine short documents, replicating
the example from Deerwester et al. (1990). Documents c1–c5 relate
to human-computer interaction, documents m1–m4 are about graphs.
Words that are part of the dictionary are in italics; other words are
either stop-words or only appear once in the corpus, and are ignored in
any subsequent processing. The bag-of-words (word frequency) matrix
representation of this corpus is in Table A.2.

Table A.1.: Example corpus (replicated from Deerwester et al. (1990)).
Label Text
c1 Human machine interface for Lab ABC computer applications
c2 A survey of user opinion of computer system response time
c3 The EPS user interface management system
c4 System and human system engineering testing of EPS
c5 Relation of user-perceived response time to error measurement
m1 The generation of random binary unordered trees
m2 The intersection graph of paths in trees
m3 Graph minors IV: Widths of trees and well-quasi-ordering
m4 Graph minors: A survey

143



144 sample corpus

Table A.2.: The same corpus as a 12× 9 bag-of-words matrix A.
c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 0 0 1 0 0 0 0 0

interface 1 0 1 0 0 0 0 0 0

computer 1 1 0 0 0 0 0 0 0

user 0 1 1 0 1 0 0 0 0

system 0 1 1 2 0 0 0 0 0

response 0 1 0 0 1 0 0 0 0

time 0 1 0 0 1 0 0 0 0

EPS 0 0 1 1 0 0 0 0 0

survey 0 1 0 0 0 0 0 0 1

trees 0 0 0 0 0 1 1 1 0

graph 0 0 0 0 0 0 1 1 1

minors 0 0 0 0 0 0 0 1 1

Table A.3.: The same corpus, with each document represented by its
adherence to two latent topics.

document topic 1 topic 2
c1 0.20 −0.06

c2 0.61 0.17

c3 0.46 −0.13

c4 0.54 −0.23

c5 0.28 0.11

m1 0.00 0.19

m2 0.01 0.44

m3 0.02 0.62

m4 0.08 0.53

(a) Latent Semantic Analysis (trun-
cated left singular vectors)

document topic 1 topic 2
c1 0.87 0.13

c2 0.92 0.08

c3 0.90 0.10

c4 0.90 0.10

c5 0.87 0.13

m1 0.25 0.75

m2 0.17 0.83

m3 0.13 0.87

m4 0.13 0.87

(b) Latent Dirichlet Allocation (varia-
tional topic parameters γ)



B
D I F F E R I N G D O C U M E N T S

Below are two articles mentioned in Chapter 6.4, on which the TF-IDF
and Latent Semantic Analysis similarity scores differ dramatically. Note
the many OCR errors present in the text. Such low-level errors would
likely make application of more refined, logic-based semantic inference
methods problematic. Statistical processing proves rubost towards this
type of “input noise”.

1. Czechoslovak Mathematical Journal, vol. 24 (99) 1974, Praha

NEWS and NOTICES IN MEMORIAM PROF. RNDr. KAREL
CERNY On 15 January 1974, RNDr. Karel Cerny,
Associated Professor of Mathematics at the Czech
Technical University, died in Prague. Prof.
Cerny was born on 6 July 1909 at Zbyslavice near
Caslav. After completing his mathe- matical
studies at Charles University in 1933 he became
lecturer at the Faculty of Mechanical
Engineering. He remained member of staff of the
Faculty till 1953 except for the years 1942--45
when he suffered from Nazi persecution. In 1953
he was appointed Associated Professor (Dozent)
first at the Faculty of Architecture and later at
the Faculty of Civil Engineering of the Czech
Technical University. Prof. Cerny spared no
effort in his educational activity which may be
characterized by his full devotion and
responsible approach. The scientific interest of
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146 differing documents

K. Cerny, who had been a pupil of Prof. V.
Jarnik, was concentrated on the theory of
numbers, particularly on the metric theory of
diophantine approximations. A more detailed
biography of Prof. Cerny is published in Cas.
pest. mat. 99 (1974), 321 -- 323. Editorial
Board

2. ARCHIVŮM MATHEMATICUM (BRNO) Vol. 26, No. 2-3 (1990),
65-66

THIS ISSUE OF ARCHIVUM MATHEMATICUM IS DEDICATED
TO THE NONAGENERIAN OF * ACADEMICIAN OTAKAR
BORtFVKA Academician Otakar Boruvka, Nestor and
legend of the Brno mathematicians, long ago one
of the leaders of the Czechoslovak mathematical
life, a prominent representative of our science
abroad, excellent teacher and oiganizer of the
scientific life was ninety on May 10, 1989. In
full mental freshness, creating activity, in
enviable spirit, in constant interest in
mathematical events. In 1920-as a student-he
passed from the Czech Technical University to the
newly founded Faculty of Science of the Brno
University and here he passed a state examination
in mathematics and physics in 1922. From the
year 1921he was a lecturer in the year 1928 he
became an associate professor, from the year 1934
he was a professor assistant and’from the year
1946 (with the effectivness from the year 1940)
he was a regular professoi of our faculty. From
the year 1970 he is a member of the Mathematical
Institute of the Czechoslovak Academy of
Sciences’ in Brno. For the time being he is an
author of 84 original scientific papers from the
area of differential geometry, general algebra
and differential equations and 50 further popular
and bibliografical papers. For his results he
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was awarded a State Prize of Klement Gottwald in
the year 1959 and Order of Labour in the year
1965, 〈hr id="0072"/〉 from the year 1953 he was a
corresponding member and from the year 1965 a
regular member of the Czechoslovak Academy of
Sciences, he is an honourable doctor of the
Komensky University in Bratislava, and honourable
member of the Association of the Czechoslovak
Mathematicians and Physicists and he received a
number of medals and diplomas of the universities
and scientific associations in our country and
abroad. Last but not least, he gave rise to this
journal (25 yeai ago, in 1965) and was its first
editor-in-chief. The rare life anniversary of
the Academician Otakar Boruvka is of course
associated with a numbei of summary publications
in professional and popular press (e.g. Czech.
Math. Journal, vol. 39 (113) 198?, 382-384).
To us, belonging to the generations of his
students, members of scientific seminars, founded
or oriented by him, to those, inspired by his
work, to his younger collaborators and colleagues
and to those esteeming his character, is,
however, this reality not only a reason for
valorizing his admirable work but also for an
oportunity to express our homage to our honoured
person by the results of our works. We wish to
Academician Boruvka health and good humour in
ordei to be able to give away, in further years,
from the treasury of his wisdom and experience.
Photo: J. France
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